Delta Coal

Mannering & CVC Collieries

Lake Macquarie Benthos Survey

Results No. 17

By Dr Emma Laxton and Dr John H. Laxton

March 2020

J.H. & E.S. Laxton - Environmental Consultants P/L 170 Warrimoo Avenue, St. Ives. NSW 2075 Australia Telephone 0429 855 891 Email john@laxton.nf

Table of Contents

1.	Summary of survey findings	5
2.	Introduction	8
3.	Location of Sampling Stations	9
4.	Selection and Evaluation of the Sampling Method	9
5.	Sampling Procedure	14
6.	Factors Affecting the Depth of water in Lake Macquarie	15
7.	Water Quality of Lake Macquarie (April 1983 – March 1997)	16
8.	Light attenuation in Lake Macquarie (1983 – 1997)	17
9.	Results	18
10.	Benthos of Study Area – February 2012 to March 2020	18
11.	Molluscs found as dead shells	25
12.	Benthic organisms of the Study Area – March 2020	31
13.	Sediment Analysis	41
14.	Water Quality Profiles – March 2020	43
15.	Analysis of data	45
16.	Conclusions	48
17.	References and Acknowledgements	49

List of Tables

1.	Co-ordinates of Benthos Sampling Stations prepared by the LDO team	12
2.	Water Quality of the body of Lake Macquarie (1983-1997)	16
3.	Organisms found at sampling Stations on 10 th and 11 th March 2020	32
4.	Number of species found at each station from February 2012 to March 2020	38

2

5.	Mean number of marine benthic organisms for Control, Reference and Impact Stations (March 2020)	40
6.	Percent mud in sediment from each station - February 2012 to March 2020	41
7.	Description of sediments from each Sampling Station collected in March 2020	42
8.	Physical characteristics of the bottom water - March 10 th and 11 th 2020	44

List of Figures

1a	Location of Benthos Sampling Stations (March 2020)	10
1b	Extent of mining to March 2020	11
2.	Water level changes in a coastal lagoon with an entrance open to coastal waters	15
3.	Mean percentage changes in PAR with depth at station 1 – Wyee Point over 12 months	17
4.	Actual percentage change in PAR at Station 1 – Wyee Point on the morning of 21-4-83	18
5.	Relationship between marine benthic organisms and stations	47

List of Plates

1a.	Annelid species found in benthos of Lake Macquarie (February 2012 – March 2020)	20
1b.	Gastropod species found in benthos of Lake Macquarie (February 2012 – March 2020)	21
1c.	Bivalve species found in benthos of Lake Macquarie (February 2012 – March 2020)	22
1d.	Brittle stars are found amongst the mussel beds of Lake Macquarie, NSW	25
2a.	Large shell removed from samples during sorting process – February 2012 survey	26
2b.	Small shell removed from samples during sorting process – February 2012 survey	26
2c.	Large shells removed from samples – September 2012 survey	27
2d.	Small shells removed from samples – September 2012 survey	27
2e.	Large shells removed from samples during sorting in March 2013	28

3

2f.	Small shells removed from samples during sorting in March 2013	28
За.	Mollusc species found as dead shells in the benthos of Lake Macquarie, NSW	29
3b.	Gastropod species found as dead shells in the benthos of Lake Macquarie, NSW	31

Appendix 1

Water Quality Profiles for the March 2020 marine benthos survey, Lake Macquarie 50	50
--	----

Summary of survey findings

In March 2020, 22 benthic stations were sampled. The following is a history of benthos sampling from 2014 to 2020:

• By March 2014, mining beneath Lake Macquarie had proceeded so that two Reference stations (R) had been re-designated Impact Stations (IM), namely:

R3 became IM5

R4 became IM6.

- By September 2014, Station R5 had become the impact station IM7.
- In March 2016 two more stations were added to the sampling schedule. They were:

- R7 GR 366232 6333856.
- In September 2016, difficult geology beneath Bardens Bay and along parts of Summerland Point led Lake Coal to begin mining beneath Chain Valley Bay. To accommodate this change in mining direction, three additional benthos sampling stations were added. They were C6, R8 and R9.

C6	GR 363988 6332492
R8	GR 364523 6332010
R9	GR 365258 6331210

- The total number of Stations sampled in September 2017 was 19.
- In March 2018, three new stations were added to the sampling programme. They were:

C7	GR 366276 6334947
R10	GR 365172 6334706

- R11 GR 367072 6333639
- The mud basin off Summerland Point, in Chain Valley Bay and Bardens Bay, was found to be inhabited by 24 species of organisms greater than 1mm in size. This list was derived from the 17 samplings undertaken between February 2012 and March 2020. Polychaete worms and bivalve molluscs were the most frequently encountered animals.
- Bottom sediment in the study area was composed of fine black mud with varying proportions of black sand and shell fragments.

Water levels in Lake Macquarie can vary by as much as 1.3m over the course of a year due to combinations of the following phenomena:

- Diurnal tidal changes (around 0.05m);
- Changes in atmospheric pressure (up to 0.4m);
- Wave set up at the entrance to Lake Macquarie;
- Inflow of water from the catchment during major rainfall events.

Light attenuation through the water column of Lake Macquarie, measured off Wyee Point, between 1983 and 1985, showed that only 14% of the photosynthetically active radiation (PAR) reached the lake bed at 2m depth (the growth limit of seagrasses and macroscopic algae in the LDO study area). At 6m depth,

between 2% and 4% of the surface PAR reached the lake bed, not enough light to support the growth of seagrasses or benthic algae.

The 17 samplings of the benthos undertaken at six monthly intervals between February 2012 and March 2020 revealed the following:

- The same suite of organisms dominated each of the 22 sample stations. These were polychaete worms and bivalves.
- Stations were distinguished by the relative abundance of the dominant species.
- Water depth was not in any way important in determining the species composition at a station.
- Physical variables such as salinity, conductivity and turbidity of the bottom water, measured only on the day the benthos was sampled, had little influence on the species composition of the benthos. Dissolved oxygen concentration, however, can have a major effect on abundance. It is clear that major extinction events have occurred in the mud basin of Lake Macquarie. The evidence for this lies in the presence of large numbers of intact but dead bivalve shells entombed in the mud. The cause of extinction events appears to be prolonged dissolved oxygen depletion of bottom water. Prolonged dissolved oxygen depletion of the bottom water was measured during the water quality study conducted by Laxton and Laxton (1983 to 1997).). Low concentrations of dissolved oxygen in the bottom water were also recorded during the March 2020 sampling period. Stations with low abundance of organisms correlated with low concentrations in the bottom waters.
- In March and September 2019, the total number of organisms found in sediment from the 22 stations was 832 and 815 respectively. This was around half the number of organisms collected in September 2018 (1576 organisms). In March 2020, a total of 1032 organisms were collected. It appears an extinction event has occurred relatively recently in Lake Macquarie, although increased numbers of organisms suggests the lake is in recovery.

These results appear to support the notion that increasing the water depth by the predicted 0.8m subsidence has, to date, had no discernible effect on the composition and abundance of organisms making up the benthos of the mud basin.

Up until recently, little significant rain has fallen in the catchments of Lake Macquarie. Annual rainfall in the Cooranbong (Lake Macquarie AWS) region was 839.8 mm in 2017; 859.8 mm in 2018 and 763.4 mm in 2019 (BOM Station Number 061412). The lack of rainfall caused the salinity of the water column to become very high (over 39 parts per thousand by March 2019) and almost uniform from surface to bottom. The Lake Macquarie region has since received heavy rainfall in August (111.2 mm) and September (64.8 mm) 2019 and again in January (79.6 mm) and February (335.4 mm) 2020 (BOM Station Number 061412). This rainfall lowered the salinity of water in the lake to around 36 parts per thousand in 2019 and 33 parts per thousand in March 2020. Water temperature, salinity, conductivity and pH were found to be uniform from surface to bottom, whilst dissolved oxygen during the March 2020 sampling period varied from surface waters to bottom water.

The lack of rainfall also had an effect on water clarity. The water of the lake became very clear for long periods. This high water clarity led to some interesting effects on the benthos of the study area. First, the small seagrass, *Halophila sp.* became established as a dense bed in 6m of water at Station R10 (Brightwaters Bay) in September 2018. *Halophila sp* was not recorded at Station R10 in March 2019 but in September 2019 a healthy plant of *Zostera capricorni* was found at this station. Second, at stations C4 and IM2, red and brown algae were found on mussels at depths between 4.5 and 6 m of water in September 2018.

In September 2019 some changes to the composition of the upper 100mm of the bottom sediments were detected. At Stations C1-C4 and C6-C7 no sand was present, just fine black silt. This indicated that these sediments had been reworked since March 2019. Sediments at Stations R5, R6 R8 and R9 also appeared to have been reworked. In March 2020, changes were again detected. Sediments at stations C5 and C7 comprised mostly of course black sand.

Note: AWS - Automatic Weather Station

Introduction

In 2012 Lake Coal P/L was seeking a variation to its mining agreement because of proposed changes to its mining methods. They were planning on increasing miniwall panel widths to 85m wide, 97m total extraction, which will result in some additional subsidence above that currently approved. As such, a modification and supporting EA was prepared. The predicted subsidence agreed to by the NSW Government was around 0.406m. The method now proposed will increase subsidence to around 0.468m.

NSW Department of Planning and Infrastructure raised concerns that this increase in depth of water over the existing benthic community of the mud basin of Lake Macquarie may alter the species composition and relative abundances of organisms within that community.

To address these concerns, Lake Coal decided to conduct a benthic survey of the mud basin community to attempt to answer the following questions.

- What is the structure of the benthic community of the mud basin off Summerland Point and in Chain Valley Bay?
- What changes to the benthic community, if any, have taken place in areas of the lake mud basin that have been subjected to subsidence from previous mining activity?
- What changes to the benthic community, if any, may be expected in the mud basin community from the proposed variation to the mining method?

This study had a seasonal component and the benthos could change from year to year without the influence of any subsidence due to mining.

Ms Jemma Sargent of JSA Environmental prepared a formal document entitled:

Benthic Communities Management Plan. Chain Valley Colliery Domains 1 & 2 Continuation. Project (10_0161). 25 June 2012.

The extraction plan required under Condition 6 of Schedule 3 within Project approval (10_0161) requires that a Benthic Communities Management Plan (BCMP) be developed. This BCMP was prepared to provide for the management of the potential impacts and/or environmental consequences of the proposed second workings on benthic communities and includes:

- surveys of the lake bed to enable contours to be produced and changes in depth following subsidence to be accurately measured;
- benthic species surveys within the area subject to second workings, as well as control sites
 outside the area subject to second workings (at similar depths) to establish baseline data on
 species numbers and composition within the communities;
- a program of ongoing seasonal monitoring of benthic species in both control and impact sites;
- development of a model to predict the likely impact of increased depth and associated subsidence impacts and effects, including but not limited to light reduction and sediment disturbance, on benthic species number and benthic communities composition, incorporating the survey data collected.

Three types of station were sampled. They were:

- Control stations C, areas of lake bed sufficiently remote from previous or proposed mining.
- Reference stations R, areas of lake bed above subsidence areas of previous mining.
- Impact stations IM areas of lake bed where subsidence is expected from future mining.

Two depth zones within the mud basin were sampled, -4.5m AHD and -5.5 to -6.0m AHD. The locations of the sampling stations were specified by Mr Chris Ellis and Mr Wade Covey, using the results of a bathymetric survey of the lake and the known locations of past and proposed mining.

In November 2014, project consent 10_0161 was surrendered. It was replaced by consent SSD-5465 as modified. The remodeled subsidence values were 0.62m for the single seam extraction area (everywhere that is currently being mined) and up to 0.886m for areas where multiseam mining will occur (near Site R2).

This report (March 2020) presents the results of the just completed 17th sampling of the now 22 (previously 19, 16, 14 and 12) stations off Summerland Point, in Chain Valley Bay, Bardens Bay and Sugar Bay. These results will be compared with those obtained from the previous fifteen surveys (February 2012 to September 2019). Field work for the 17th survey was conducted between the 10th and 11th March 2020. The work in March 2020 was supervised by Mr Chris Armit of Chain Valley Colliery.

Location of Sampling Stations

Figure 1 shows the location of sampling stations, depth contours of the lake, and the locations of existing and proposed underground mine workings prepared by Mr Chris Armit and the LDO team in February 2017 and updated in October 2019. **Table 1** provides the exact location of each sampling station by latitude and longitude and by eastings and northings using WGS84 datum.

Selection and Evaluation of the Sampling Method

Methods for sampling benthos of sedimentary bottoms of oceans, coastal waters and saline and freshwater lakes must fulfill the following criteria:

- The area of bottom collected by the sampling device must be appropriate to the types and sizes of organisms inhabiting the substratum.
- The depth that the sampler penetrates the sediment must be sufficient to capture infauna or identifiable parts of more deeply buried species.
- Sufficient samples must be taken within the benthic environment to be certain that more than 95% of the component species of the ecosystem are collected.
- Sufficient samples must be taken to permit the population densities of component species to be calculated.

In 1971, Dr John Laxton was appointed by Dr Frank Talbot, Director of the Australian Museum, to lead a team of scientists to undertake the Shelf Benthic Survey. The purpose of the Shelf Benthic Survey was to provide baseline biological data on the benthos, fish and birds of the Continental Shelf adjacent to Sydney. Baseline oceanographic and biological data for coastal waters adjacent to Sydney were required to evaluate the effects of the proposed deep water ocean outfalls planed by the Metropolitan Water Sewerage and Drainage Board to replace the existing shoreline sewage outfalls. Both rocky bottoms and sedimentary bottoms were present in the study area and water depths ranged from the intertidal zone out to 200m.

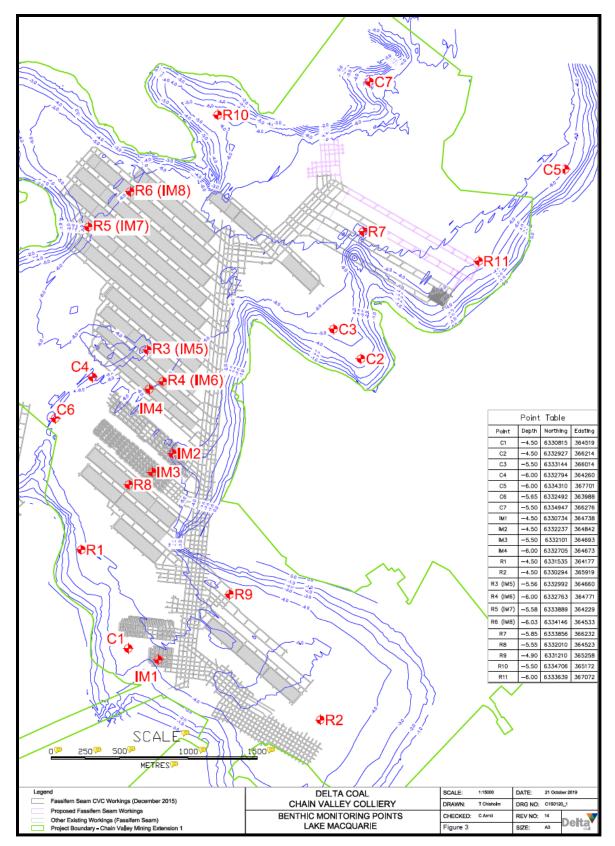


Figure 1a. Location of Benthos Sampling Stations (March 2020).

Figure 1b. Extent of mining to March 2020

Station Co-ordinate Table							
Station	Sample depth (m) AHD	Latitude	Longitude	MG-56 Easting	MG56 Northing		
C1	-4.50	S33° 09' 10.69"	E151° 32' 50.11"	364519	6330815		
C2	-4.50	S33° 08' 02.89"	E151° 33' 56.65"	366214	6332927		
C3	-5.50	S33° 07' 55.78"	E151° 33' 49.05"	366014	6333144		
C4	-6.00	S33° 08' 06.35"	E151° 32' 41.17"	364260	6332794		
C5	-6.00			367701	6334310		
C6	-5.50			363988	6332492		
C7	-5.50			366276	6334947		
IM1	-4.50	S33° 09' 13.44"	E151° 32' 58.51"	364738	6330734		
IM2	-4.50	S33° 08' 24.67"	E151° 33' 03.34"	364842	6332237		
IM3	-5.50	S33° 08' 29.02"	E151° 32' 57.52"	364693	6332101		
IM4	-6.00	S33° 08' 09.42"	E151° 32' 57.04"	364873	6332705		
R1	-4.50	S33° 08' 47.18"	E151° 32' 37.31"	364177	6331535		
R2	-4.50	S33° 09' 28.23"	E151° 33' 43.87"	365919	6330294		
R3 (IM5)	-5.50	S33° 08' 00.10"	E151° 32' 56.72"	364660	6332992		
R4 (IM6)	-6.00	S33° 08' 07.58"	E151° 33' 00.88"	364771	6332763		
R5(IM7)	-5.50	S33° 07' 30.78"	E151° 32' 40.55"	364229	6333889		
R6	-6.00	S33° 07' 22.56"	E151° 32' 52.42"	364533	6334146		
R7	-6.00			366232	6333856		
R8	-5.50			364523	6332010		

 Table 1. Co-ordinates of Benthos Sampling Stations prepared by the LDO team.

R9	-4.50		365258	6331210
R10	-5.50		365172	6334706
R11	-6.00		367072	6333639

At first, a Shipek grab was employed to collect samples of sediment. The Shipek grab used a spring loaded hemi-cylindrical bucket that rotated through 180° to collect a half cylinder of sediment nominally 200 x 200 mm in area and cut to a maximum depth of 100mm. On gravel bottoms, the Shipek grab worked consistently to collect 200 x 200 x 100mm samples. On sandy bottoms the grab, when triggered, penetrated the bottom to varying depths, collecting half cylinders of sediment that could range in depth from the full 100mm to as little as 25mm. This meant that the area of the seabed sampled varied greatly between samples taken at the same station and the depth of some samples was so shallow that many species of infauna were not collected. On muddy bottoms the heavy Shipek grab could plunge into the soft mud and emerge untriggered.

The Shipek grab was safe to use from a pitching and rolling vessel but as a scientific sampling device, it had serious deficiencies.

The Shelf Benthic Survey then obtained a Smith-MacIntyre (S-M) grab for evaluation. The Smith-MacIntyre grab used two spring operated clam-shells which swung inwards towards the midline to gather 200 x 200 x 100mm samples of sediment. This grab also had similar limitations to the Shipek grab when used to sample various sediment types. The worst feature of the S-M grab was that the two springs had to be tensioned by a lever separately and then a keeper was placed in position to stop it triggering while on deck or while being lowered to the sea bed. To position the keeper, the operator had to reach in between the two cocked spring loaded clam-shells. These clam-shell jaws were sharp and the action was violent enough to remove a hand. The Captain of the vessel banned its use on the project and undoubtedly saved someone's hand.

Following completion of the Shelf Benthic Survey, John Laxton joined an engineering firm that was commissioned to design wastewater outfalls for Gosford City, Wyong Shire and the Hunter Area. Baseline data on water quality and biology were again required and the seabed in the discharge and mixing zones was either rocky or sedimentary. As the maximum water depth in sedimentary areas was 30m, diver operated sample collection devices could be used to sample sedimentary bottoms. It was decided to build a diver operated benthic sampler that would overcome the difficulties and deficiencies of the available grab samplers. It should collect a 200 x 200 x 100mm section of sediment consistently and be easy to operate in conditions of zero underwater visibility.

To collect a 200 x 200 x 100mm sample of sediment consistently an aluminium box was designed that could be slid sideways into the sediment, whether gravel, sand or mud, and be filled completely before it was lifted clear of the bottom and the door closed and locked to retain the sediment. The top of the box included a panel of 1.0mm stainless steel mesh. Thus each box contained its own sieve to permit particles less than 1mm in size to be removed from the box leaving only large particles and organisms.

Tests of this box revealed that in all sediments (gravel, sand and mud) between 3 and 5 replicate samples were required to capture 95% of the species present. Once the maximum number of replicates required had been determined, five sieve boxes were manufactured along with a carry case to contain the boxes on the journey between the surface and the bottom and back. These devices permitted samples of consistent area and depth to be collected. Five replicates were always collected regardless of the

sediment type or the environment being studied so that individual species/area curves were not required for each new area being investigated.

Five sieve boxes sample an area of 0.20 m². This sampling device has been used in all J.H. & E.S. Laxton - Environmental Consultants P/L benthos studies since 1980.

In an attempt to make the Summerland Point/Chain Valley Bay study results comparable with other studies, the BCMP required two cores of 100mm diameter and 200mm depth to be taken along with the 5 sieve box samples. These two cores covered an area of 0.015 m^2 . There was no requirement in the BCMP to determine how many cores of these dimensions were needed to capture 95% of the benthic species inhabiting the lake bed. However, it is unlikely that sampling 0.015 m^2 of bottom sediment will provide a more realistic picture of the structure of the benthic community than sampling 0.20 m^2 of bottom sediment.

Sampling Procedure

Between September 2012 and March 2020, five replicate samples of basin mud were collected at each station using 200 x 200 x 100mm sieve boxes (1mm mesh). Two 100 x 200mm core samples were also collected at each station on each date sampled.

Twenty-two stations were sampled in March 2020. At each station the following procedure was carried out:

- A GPS unit was used to locate the sampling station. The boat was positioned upwind of the station and was then allowed to drift back to the exact location. When the wind strength was 0-5km/h, the boat stayed on position. When the wind strength increased from 5 to 25km/h, the boat yawed on its anchor warp, causing the distance from the boat to the station to vary greatly and the sampling difficulty to increase. This was mitigated by working in calm conditions only.
- A line with five sieve boxes, two 100 x 200mm core samplers and a mesh bag containing a 250mL jar for whole sediment was cast over board as the boat drifted into position.
- The diver descended to the lake bed to fill the 250mL jar, the two core samplers and five sieve boxes with sediment.
- The samplers were then hauled to the surface, and the contents of each sampler placed in a clean, labeled zip-lock plastic bag.
- Processing of samples occurred in the laboratory.
- A water quality profile from surface to bottom (at 0.5m depth intervals) was taken using a calibrated Yeo-Kal 618 Water Quality Analyser. Water temperature, conductivity, salinity, pH, dissolved oxygen, turbidity and depth were measured. Each line of data was stored in the memory of the machine.

In the laboratory the marine benthic samples were treated in the following way:

- Each sample was tipped into a 1 mm mesh sieve and washed free of mud.
- The washed material from each sample was then placed into an enamel dish and sorted for animals.
- Organisms and parts of organisms were removed, counted, identified and the results entered into a spread sheet. This process was repeated until the debris of the entire sample had been examined.
- Sorted organisms were preserved in formaldehyde solution.
- All shell remaining in the sample was kept for later examination.

The 250mL samples of whole sediment were treated in the following way:

- Each sample was tipped into a 1L clear glass measuring cylinder and the volume made up to 600mL with seawater.
- The cylinders were stoppered and shaken vigorously to suspend the sediment in the seawater.
- The cylinders were then placed on the laboratory bench to allow the fractions of the sediment to settle.
- Once settled the sediment profiles were photographed and the volumes of each fraction (shell and coarse sand, fine sand, mud and fine silt) were calculated and recorded. Results were displayed relative to the initial volume of sediment collected in the 250mL jar.

Factors Affecting the Depth of Water in Lake Macquarie

The bathymetric chart of Lake Macquarie shows water depths relative to AHD. The actual depth of water above the lake bed varied greatly (**Figure 2**).

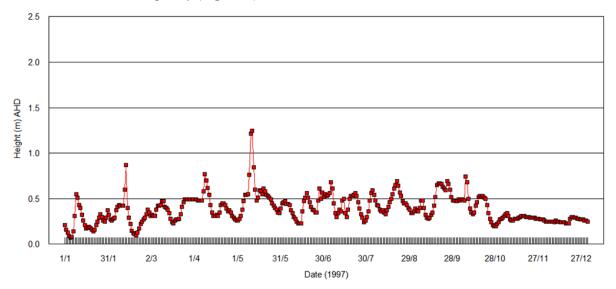


Figure 2. Water level changes in a coastal lagoon with an entrance open to coastal waters.

The actual water depth above the lake bed varied between 0 and 1.3m above AHD over a year. Water depths in coastal saline lakes with an open entrance to coastal waters varied due to combinations of the following factors:

- The body of Lake Macquarie was subject to tidal influence. The height of the tidal prism at Swansea Head may reach almost 2m (during spring tides) but by the time the body of the lake was reached, the tidal prism had been reduced to around 0.05m.
- The height of coastal waters and coastal lakes were influenced by changes in atmospheric pressure. The Tasman Sea acted as a huge barometer. When the atmospheric pressure was high the sea surface was depressed. This caused water to drain from Lake Macquarie causing the depth of water in the body of the lake to decrease. When the atmospheric pressure over the Tasman Sea was low, the surface of the sea bulged upwards. This raising of sea level caused water to flow into Lake Macquarie, increasing the water depth.

- Low pressure systems in the Tasman Sea almost always generated strong winds and coastal rainfall. The strong winds caused large swells to form that impact the coast. Wave setup at the entrance to Lake Macquarie caused the water level in the lake to rise as large volumes of seawater entered the system.
- Rainfall during a period of low atmospheric pressure caused runoff into catchment rivers and streams to increase. When this extra water reached the body of Lake Macquarie, the water level rose in proportion to the runoff volume. This water was prevented from exiting the lake by wave setup at the entrance and the state of the tide. Under these circumstances, the level of the lake rose to heights of a meter or more above AHD (Figure 2).

Water Quality of Lake Macquarie (April 1983 – March 1997)

In 1983 the Hunter District Water Board (later Hunter Water Corporation) commissioned J.H. & E.S. Laxton – Environmental Consultants P/L to carry out a water quality study of Lake Macquarie in conjunction with their plans to sewer the western shore of the lake. The study commenced in April 1983 with monthly sampling of the lake and ended in March 1997. The water quality results for the body of Lake Macquarie (as opposed to the creeks) are summarized and presented in **Table 2**.

Variable		Mean	Maximum	Minimum
Water Temperature (°C)	Surface	20.56	33.77	10.95
	Bottom	20.06	29.17	11.45
Water Salinity (ppt)	Surface	32.61	37.96	1.00
	Bottom	33.92	37.95	21.06
РН	Surface	8.28	9.28	7.19
	Bottom	8.26	8.90	7.55
Dissolved Oxygen (% saturation)	Surface	101.6	177.7	71.9
	Bottom	89.5	147.0	0.9
Turbidity (NTU)	Surface	3.0	32.8	0.0
	Bottom	5.1	77.7	0.0
Transmission of light through water (%)	Surface	94.2	99.9	7.3
	Bottom	88.1	99.4	2.0
Total Suspended Solids (mg/L)	Surface	4.8	123.5	0.5
Chlorophyll-a (µg/L)	Surface	2.953	112.900	0.000
Ammonia-nitrogen (mg-N/L)	Surface	0.071	1.500	0.006
	Bottom	0.075	0.813	0.010
Organic-nitrogen (mg-N/L)	Surface	0.355	9.691	0.000
	Bottom	0.361	3.357	0.002
Oxidized-nitrogen (mg-N/L)	Surface	0.010	0.459	0.000
	Bottom	0.008	0.142	0.000

Table 2. Water Quality of the body of Lake Macquarie (1983-1997)

Total-nitrogen (mg-N/L)	Surface	0.436	9.749	0.033
	Bottom	0.445	3.918	0.027
Orthophosphate phosphorus (mg-P/L)	Surface	0.0191	0.4148	0.0006
	Bottom	0.0188	0.1386	0.0003
Total phosphorus (mg-P/L)	Surface	0.0450	0.8922	0.0025
	Bottom	0.0489	0.3534	0.0022
Faecal coliform bacteria (No./100mL)	Surface	55	5000	0

Blue shading in Table 2 indicates variables of interest to this study of the benthos of Lake Macquarie.

Light attenuation in Lake Macquarie (1983 – 1997)

Observations made over many years (Laxton, 2007) show that photosynthetic benthic organisms (seagrasses and algae) are confined to the shallow water areas around the perimeter of Lake Macquarie. In Chain Valley Bay, Bardens Bay and off Summerland Point, seagrasses and benthic algae grow between 0 and -1.89m below AHD (except in September 2018 when *Halophila* and some algae were found in 4.5 to 6m of water at some stations due to low rainfall and clear water).

The water quality study of Lake Macquarie, carried out between 1983 and 1997, measured Photosynthetically Active Radiation (PAR) changes with depth monthly at twelve stations throughout the lake during the years 1983 to 1985. Data for Station 1 off Wyee Point are presented in **Figure 3** and **Figure 4**.

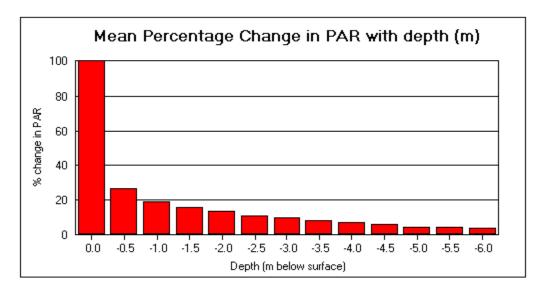
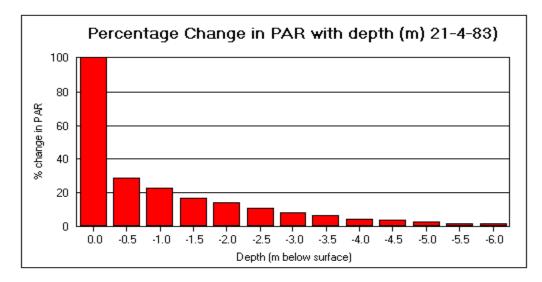



Figure 3. Mean percentage changes in PAR with depth at Station 1 - Wyee Point over 12 months.

Figure 4. Actual percentage changes in PAR at Station 1 - Wyee Point on the morning of 21-4-83.

It was found that only 14% of the light present at the surface reached a depth of 2.0m below the surface. By 6m below the surface only between 2% and 4% of PAR remained. Seagrasses and algae just manage to survive at 14% of the surface radiation but have no chance of survival at 6m below the surface. The mud basin of Lake Macquarie was devoid of macroscopic benthic algae and seagrasses except at some stations in September 2018.

Results

Benthos of the Study Area – February 2012 to March 2020

The following organisms were found in the sediment samples collected off Summerland Point and in Chain Valley Bay between February 2012 and March 2020:

Designated name	Family or Species	Comments
Anemone	Coelenterata	Found associated with mussel shells.
Planaria (Flat worm)	Platyhelminthes	2 specimens found in 2017.
Polychaete thin	Sthenelais pettiboneae	Most common polychaete present.
Polychaete (thick)	Cirratulidae	Present in small numbers.
Polychaete (mud tube)	Not yet identified	Present in small numbers.
Polychaete	Terebellidae	Present at Stations C1, C6, R1 and IM2.
Pectinaria sp. Polychaete	Terebellidae	First found in March 2019
Gastropod	Nassarius jonasii	Present in small numbers.
Gastropod	Lepsiella (Bedeva) hanleyi	Present in small numbers.
Gastropod	Bullimorph slug	One specimen found in August 2014.

Bivalve	Corbula truncata	Common as live animals and dead shells.
Bivalve	Soletellina alba	Common
Bivalve	Paphia undulata	Uncommon as live animals. Common as dead shells.
Bivalve	Cyamiomactra mactroides	Uncommon. (Brown or pink bivalve)
Bivalve	Anadara trapezia	Uncommon.
Bivalve	Dosinia sculpta	Many juveniles found in sandy sediment in September 2019.
Bivalve	Trichomya hirsuta	Common as dead shells. Found in large clumps at C2, C6, R3, R7, IM2 and IM3.
Ophuroid	Brittle star	Uncommon, found associated with mussel clumps and on mud.
Sponge	White calcareous sponge	Specimen found associated with mussels.
	Pink sponge	Small species found on mud surface.
	Red sponge	Several specimens found in 2019.
Crab	Small	Uncommon.
Prawn	Small	One specimen taken in March 2013 at R3 and one specimen in September 2013 at C4.
Shrimp	Small	Found at IM2 in March 2014.
Fish	Small (35mm)	One specimen taken at C3 (September 2012), at R1 (September 2013) and at IM4 in March 2017. 1 specimen in C6 in 2019.


Plates 1a to 1d provide information about the benthic organisms present in the basin mud of Lake Macquarie, NSW.

Plate 1a. Annelid species found in the benthos of Lake Macquarie (February 2012 - March 2020).

Phylum :	Annelida
Class:	Polychaeta
Subclass:	Errantia
Order:	Phyllodocida
Family:	Sigalionidae
Genus:	Sthenelais
Species:	Sthenelais pettiboneae

Remarks: Found in marine environments.

Phylum :	Annelida
Class:	Polychaeta
Subclass:	Canalipalpata
Order:	Terebellida
Family:	Cirratulidae

Remarks: Cirratulids vary in size from 1-20 cm long. They are mostly burrowers in soft sediments but some live in rock crevices. The head is conical or wedge-shaped and has no antennae. The body is generally cylindrical, tapering at both ends. Cirratulids are characterised by a large number of simple elongate filaments along the body. The genera are poorly defined.

Plate 1b. Gastropod species found in the benthos of Lake Macquarie (February 2012 - March 2020).

Phylum :	Mollusca
Class:	Gastropoda
Superfamily:	Buccinoidea
Family:	Nassariidae
Genus:	Nassarius
Species:	Nassarius jonasii

Remarks: Endemic to Australia; Noosa Heads, Qld, to SA. Inhabit sand and mud flats in estuaries and lagoons, intertidal down to 100 m. Most *Nassarius* species are very active scavengers. They often burrow into marine substrates and then wait with only their siphon protruding, until they smell nearby food.

Phylum :	Mollusca
Class:	Gastropoda
Order:	Neogastropoda
Family:	Muricidae
Genus:	Lepsiella (Bedeva)
Species:	Lepsiella hanleyi

Remarks: Common name mussel drill. Shell up to 32 mm, with angulated whorls, a high spire and moderately long anterior canal and with both spiral threads and axial ribs. Endemic to Australia. Found in temperate and southern parts of tropical Australia. Lives mainly on sheltered shores, including estuaries and often in association with mangroves. Feeds by drilling holes in bivalves. Lays lens-shaped capsules and development is direct.

Plate 1c. Bivalve species found in the benthos of Lake Macquarie (February 2012 - March 2020).

Phylum :MolluscaClass:BivalviaOrder:MyoidaFamily:CorbulidaeGenus:CorbulaSpecies:Corbula truncata

Remarks: Marine bivalve mollusc.

Phylum :	Mollusca
Class:	Bivalvia
Order:	Veneroida
Family:	Psammobiidae
Genus:	Soletellina
Species:	Soletellina alba

Remarks: Posterior and anterior margins almost parallel. Shell thin and normally bluish, rarely white. Lives intertidally and subtidally in sand and mud, especially in sheltered environments. Occurs all around Australia; not recorded elsewhere.

Phylum :	Mollusca
Class:	Bivalvia
Order:	Veneroida
Family:	Veneridae
Genus:	Paphia
Species:	Paphia undulata

Remarks: Saltwater clam, marine bivalve mollusc. Inhabits inshore shallow sandy seabeds.

Phylum :	Mollusca
Class:	Bivalvia
Order:	Veneroida
Family:	Veneridae
Genus:	Dosinia
Species:	Dosinia sculpta

Remarks: *Dosinia* is a genus of saltwater clams, marine bivalve molluscs in the family Veneridae, (subfamily Dosiniinae). The shell of *Dosinia* species is disc-like in shape, usually white, and therefore is reminiscent of the shells of Lucinid bivalves.

Typically found in the intertidal zone at the water's edge at a mean distance from sea level of -15 meters (-50 feet).

Phylum :	Mollusca
Class:	Bivalvia
Order:	Veneroida
Family:	Cyamiidae
Genus:	Cyamiomactra
Species:	Cyamiomactra mactroides

Phylum :	Mollusca
Class:	Bivalvia
Order:	Arcoida
Family:	Arcidae
Genus:	Anadara
Species:	Anadara trapezia

Remarks: Sydney cockle, or ark cockle is an estuarine filter-feeding bivalve. Its calcareous, heavily-ribbed, shell can grow to approximately 7 to 8 cm across. Its current range is along the east coast of Australia, from Queensland to Victoria. It has been used as an indicator species to study levels of the metals selenium, copper and cadmium.

Phylum :	Mollusca
Class:	Bivalvia
Order:	Mytiloida
Family:	Mytilidae
Genus:	Trichomya
Species:	Trichomya hirsuta

Remarks: The hairy mussel is a major part of the megafauna of Lake Macquarie. It is tolerant of low oxygen levels in the water and its temperature tolerance range has been researched in connection with using the waters of the lake for cooling power stations.

Hairy mussels have been used as bioindicators to monitor concentrations of heavy metals (namely Pb, Cd, Cu, Zn, Co, Ni, and Ag) in marine environments.

Plate 1d. Brittle stars are found amongst the mussel beds of Lake Macquarie, NSW.

Phylum :	Echinodermata
Class:	Ophiuroidea
Order:	Ophiurida
Family:	Ophionereididae
Genus:	Ophionereis
Species:	Ophionereis schayeri

Remarks: Largest and most common brittle star found in Sydney waters. Brittle stars have five long, slender arms which radiate out from a central disc. The mouth is located in the centre of the underside of the disc. There is no anus. Offshore, brittle stars form dense aggregations. In intertidal zones, they are typically found as single individuals in crevices, under stones and amongst seaweed. They feed by raising their arms above the substrate; extending tube-feet; and removing particles from the water. They pass food along the arms to the mouth. They also scavenge on decaying matter. They inhabit the hairy mussel beds of Lake Macquarie.

Molluscs found as dead shells

Benthic organism samples collected between February 2012 and March 2020 included a large component of shell. **Plates 2a** and **2b** show the mass of shell obtained from the sixty 200x200x100mm samples of sediment taken in February 2012. **Plate 2c** and **Plate 2d** show the mass of shell collected in September 2012 and **Plates 2e** and 2f show the mass of shells collected in March 2013.

Plate 2a. Large shell removed from samples during sorting process - February 2012 survey.

Plate 2b. Small shells removed from samples during sorting process - February 2012 survey.

Plate 2c. Large shells removed from samples - September 2012 survey.

Plate 2d. Small shells removed from samples during sorting in September 2012.

Plate 2e. Large shells removed from samples during sorting in March 2013.

Plate 2f. Small shells removed from samples during sorting in March 2013.

Similar masses of shell were found in the samples of the September 2013 to March 2020 surveys. These masses of shell were photographed for the record but were not included in this report.

The following molluscs were found in the large volume of shell collected during the sampling periods between February 2012 and March 2020:

- 1. Paphia undulata
- 2. Anomia sp.
- 3. Dosinia sculpta
- 4. Trichomya hirsuta
- 5. Katelysia rhytiphora
- 6. Pecten sp.

- 7. Chlamys sp.
- 8. Saccostrea glomerata
- 9. Corbula truncata
- 10. Batillaria (Velacumantis) australis
- 11. Conuber sp.
- 12. Anadara trapezia

Plates 3a and **3b** provide information about bivalve mollusc and gastropod species found as dead shells in the basin mud of Lake Macquarie, New South Wales during the periods of sampling.

Plate 3a. Mollusc species found as dead shells in the benthos of Lake Macquarie, NSW.

Phylum : Mollusca Class: Bivalvia Order: Ostreoida Family: Anomiidae Genus: Anomia

Remarks: Genus of saltwater clam, marine bivalve mollusc. Known as "jingle shells". Common in both tropical and temperate oceans and live primarily attached to rock or other shells via a calcified byssus that extends through the lower valve. *Anomia* shells tend to take on the surface shape of what they are attached to; thus if an *Anomia* is attached to a scallop shell, the shell of the *Anomia* will also show ribbing.

Phylum : Mollusca
Class: Bivalvia
Order: Veneroida
Family: Veneridae
Genus: Katelysia
Species: Katelysia rhytiphora
Remarks: Commonly known as mud cockles, this group of commercially important bivalves

this group of commercially important bivalves often represents a major faunal component of shallow estuarine and marine embayments. *K. rhytiphora* is broadly distributed around Australia's temperate coastline from Augusta, Western Australia to Port Jackson, NSW.

Phylum : Mollusca Class: Bivalvia Order: Ostreoida Family: Pectinidae Genus: *Pecten*

Remarks: Genus of large saltwater clams or scallops. Marine bivalve mollusc.

Phylum : Mollusca Class: Bivalvia Order: Ostreoida Family: Pectinidae Genus: Chlamys

Remarks: Genus of saltwater clams or scallops. Marine bivalve mollusc.

Phylum : Mollusca Class: Bivalvia Order: Ostreoida Family: Pectinidae Genus: Saccostrea

Species: Saccostrea glomerata

Remarks: Sydney rock oysters are endemic to Australia and New Zealand. In Australia it is found in bays, inlets and sheltered estuaries from Wingan Inlet in eastern Victoria, along the east coast of NSW and up to Hervey Bay QLD, around northern Australia and down the west coast to Shark Bay in WA. Sydney rock oysters are capable of tolerating a wide range of salinities (halotolerant). They are usually found in the intertidal zone to 3 metres (9.8 ft) below the low water mark.

Plate 3b. Gastropod species found as dead shells in the benthos of Lake Macquarie, NSW.

Phylum : Mollusca
Class: Gastropoda
Family: Naticidae
Genus: Conuber
Species: Conuber sordidum

Remarks: Species of predatory sea snail. A marine gastropod mollusc known commonly as the moon snail. Lives on intertidal muddy sand flats near mangroves or sea weed.

Phylum : Mollusca
Class: Gastropoda
Family: Batillariidae
Genus: Batillaria (Velacumantis)
Species: Batillaria australis

Remarks: The Australian Mud Whelk is a marine gastropod found on mud flats in estuaries, river mouths and mangrove swamps. The snail has a high resistance to predation and environmental tolerance, which may partially explain its success as an invasive species. This species is one of the hosts for the flatworm parasite *Austrobilharzia*. Larvae of the flatworm are discharged from the snail into the surrounding water. They normally burrow into the legs of wading birds and complete their life cycle, but may burrow though the skin of humans, causing "bathers itch".

Benthic organisms in the Study Area - March 2020

The organisms found living in the sediments of the mud basin off Summerland Point and in Chain Valley Bay and Bardens Bay were entered into an Excel worksheet. **Table 3** shows the organisms found in each replicate at each station sampled in March 2020. Data for sieve box samples were separated from data obtained from core samples.

Table 3. Organisms found at Sampling Stations on 10th and 11th March 2020.

Control Sta	ation C1		Depth -4.50	m AHD		56 364519	6330815		Sampled N	Narch 10-11t	n 2020					
		Polychaete			Gastropod	Gastropod	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Ophuroid	Barnacle	Fish	Crab
Replicates		thin	mud	thick	Nassarius	Bedeva	Corbula	Soletellina	Paphia	Anadara	Cyamiomactr	Trichomya				
C1.1		2	3	0	0	0	0	2	0	0	0	0	0	0	0	0
C1.2		4	0	0	0	0	9	0	0	0	0	0	0	0	0	0
C1.3		1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
C1.4		3	0	0	0	0	2	0	0	0	0	0	0	0	0	0
C1.5		1	0	0	0	0	3	1	1	0	0	0	0	0	0	0
C1.6		1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
C1.7		1	0	0	0	0	1	1	0	0	0	0	0	0	0	0
Mean/statior	n (hoves)	2.2	0.6	0.0	0.0	0.0	3.0	0.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mean cores		1.0	0.0	0.0	0.0	0.0	0.5	1.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
no./m2 (box		55	15	0	0	0	75	15	5	0	0	0	0	0	0	0
no./m2 (core	e)	20	0	0	0	0	10	20	0	0	0	0	0	0	0	0
No. species	s (box)	5														
No. species	s (core)	3											Total Orga	anisms at S	tation	33
Control St	ation C2		Depth -4.5	0m AHD		56 366214	6332927		Sampled N	arch 10-11t	n 2020					
		Data	Data 1	Debut	0	0	Dist	D1 1	D 1 1	D: -:	D 1	D 11	0.1	D		Dia 1
Replicates		Polychaete thin	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Bivalve Paphia	Bivalve Anadara	Bivalve Cyamiomactr	Bivalve Trichomya	Ophuroid	Barnacle	Fish	Planaria
											-,					
C2.1		0	2	0	0	0	6	3	0	0	0	0	0	0	0	0
C2.2		1	2	0	0	0	12	2	0	0	1	0	0	0	0	0
C2.3		0	1	1	0	0	1	2	0	0	0	0	0	0	0	0
C2.4		2	5	1	0	0	0	0	0	0	0	0	0	0	0	0
C2.5		3	1	0	0	0	1	0	0	0	1	0	0	0	0	0
C2.6		1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
C2.7		2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean/station	n (boxes)	1.2	2.2	0.4	0.0	0.0	4.0	1.4	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0
Mean cores		1.5	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
no./m2 (box no./m2 (core		30 30	55 30	10 0	0	0	100 0	35 0	0	0	10 0	0	0	0	0	0
	6)	50	50	0	0	0	0	0	0	0	0	0	0	0	0	0
No. species		6														
No. species	s (core)	2											Total Orga	anisms at S	itation	48
Control St	ation C3		Depth -5.5	0m AHD		56 366014	6333144		Sampled N	Narch 10-11t	ו 2020					
		Polychaete	Polychaete		Gastropod	Gastropod	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Ophuroid	Bivalve	Planaria	Sponge
Replicates		thin	mud	thick	Nassarius	Bedeva	Corbula	Soletellina	Paphia	Anadara	Cyamiomactr	Trichomya		Dosinia		
C3.1		3	2	0	0	0	3	1	0	0	1	0	0	0	0	0
C3.2		3	0	0	0	0	0	1	0	0	0	0	0	0	0	0
C3.3		3	10	0	0	0	1	1	0	0	0	0	0	0	0	0
C3.4 C3.5		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
00.0		-	£			0	4		Ū	Ŭ	0	0		0		
C3.6		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
C3.7		2	2	0	0	0	2	0	0	0	0	0	0	0	0	0
Mean/statior	n (boxes)	2.6	2.8	0.2	0.0	0.0	1.4	0.8	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
Mean cores		1.0	1.5	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
no /m2 /hr	۱	CF.	70	F	0	0	25	20	0	0	F	0	0	0	0	0
no./m2 (box no./m2 (core		65 20	70 30	5	0	0	35 20	20 0	0	0	5 0	0	0	0	0	0
							-	-			-	-		-	-	
No. species		6														
No. species	s (core)	3											I otal Orga	anisms at S	tation	40

			Depth -5.50			56 364260	6332794		Samp										
Replicates		Polychaete thin	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Biva Pap		Bivalve Anadara	Bivalv Cyamion		alve Oph io <i>my</i> a	nuroid	Barnacle	Fish	Crab	Planaria
															_			_	-
C4.1		3	0	0	0	0	0	0	0		0	0			0	0	0	0	0
C4.2 C4.3		1	0	0	0	0	0	0	0		0	0			0	0	0	0	0
C4.4		0	1	0	0	0	0	0	0		0	0			0	0	0	0	0
C4.5		1	0	0	0	0	1	0	C		0	0			0	0	0	0	0
C4.6 C4.7		1 3	0	0	0	0	0	0	0		0	0			0	0	0	0	0
Mean/station	(boxes)	1.2	0.2	0.0	0.0	0.0	0.2	0.2	0.	.0	0.0	0.0	C	.0 0	0.0	0.0	0.0	0.0	0.0
Mean cores	()	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.		0.0	0.0			0.0	0.0	0.0	0.0	0.0
no./m2 (box) no./m2 (core		30 40	5 0	0	0	0	5 0	5 0	C		0 0	0			0	0 0	0	0	0
No. species No. species		4												Tota	l Orga	nisms at	Station	9	
														Tota	lorga	mania at	Station	3	
Control Sta	tion C5		epth -5.50m			67701 6334				rch 10-11									
Replicates		Polychaete P thin	mud			stropod Bival edeva Corb			alve phia	Bivalve Anadara	Bival Cyamio		Bivalve Ichomya	Ophuroid E	Barnacle	Fish	Crab	Sponge	Bivalve Dosinia
C5.1		5	7	2	0	0 0	0		0	0	0		0	1	0	0	0	0	0
C5.2		4	4	0	0	0 0	1		0	0	0		0	0	0	0	0	0	1
C5.3		0	29	0	0	0 0	0		0	0	0		0	0	0	0	0	0	0
C5.4 C5.5		0 3	10 2	0	0	0 0	0		0	0	0		0	0	0	0	0	2	0
C5.6		0	2	0	0	0 0	0		0	0	0		0	1	0	0	0	0	0
C5.6 C5.7		0	3	0	0	0 0	0		0	0	0		0	1	0	0	0	0	0
Mean/station (Mean cores	(boxes)	2.4 0.0	10.4 2.5	0.4	0.0 0.0	0.0 0.0			0.0	0.0 0.0	0.0		0.0	0.6	0.0 0.0	0.0	0.0	0.4	0.2
no./m2 (box)		60	2.5	10	0.0	0 0	5		0	0.0	0.0		0.0	1.0	0.0	0.0	0.0	10	5
no./m2 (box) no./m2 (core))	0	50	0	0	0 0	0		0	0	0		0	20	0	0	0	0	0
No. species No. species		7 2											т	otal Organi	sms at	Station	7	3	
Control St			Depth -5	.50m AHE		56 36398	8 63324	02		Sample	d March	10-11 1 6		j					
oona or or		Polychaete							alve	Bivalv		ivalve	Bivalve	Bivalve	, C	Ophuroid	Barnacle	Fish	Crab
Replicates		thin	mud	thick			Corbul		tellina	Paphi			Cyamioma						
C6.1		0	0	0	0	0	2		3	0		0	0	0		0	0	0	0
C6.2		0	0	0	0	0	3	(0	0		0	0	0		0	0	0	0
C6.3		0	1	0	0	0	0		0	0		0	0	0		0	0	0	0
C6.4		0	0	0	0	0	0		0	0		0	0	0		0	0	0	0
C6.5		0	0	0	0	0	5	2	2	0		0	0	0		0	0	0	0
C6.6		0	0	0	0	0	0		1	0		0	0	0		0	0	0	0
C6.7		1	0	0	0	0	0		0	0		0	0	0		0	0	0	0
Mean/statior	n (boxes)	0.0	0.2	0.0	0.0	0.0	2.0	1	.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
Mean cores		0.5	0.0	0.0	0.0	0.0	0.0	0).5	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
no./m2 (box) no./m2 (core	,	0 10	5 0	0	0	0	50 0		25 10	0		0 0	0	0		0	0	0	0
No. species	e (hox)	3		_															
No. species		2													То	otal Orga	nisms at St	ation	16
Control St	ation C7		Depth -5	.50m AHE)	56 36473	6 63349	47		Sample	d March	10-11th	2020						
			e Polychaet						alve	Bivalv		ivalve	Bivalve			Dphuroid	Barnacle	Fish	Crab
Replicates		thin	mud	thick	Nassar	us Bedeva	Corbul	a Solei	tellina	Paphi	ia Ar	nadara	Cyamioma	ctr Trichom	ya				
C7.1		5	18	0	0	0	0		0	0		0	0	0		0	0	0	0
C7.2		12	18	0	0	3	5		0	0		0	1	0		1	0	0	0
C7.3		4	17	0	0	0	0		0	0		0	0	0		0	0	0	0
C7.4		0	11	0	0	0	0		0	0		0	0	0		0	0	0	0
C7.5		5	10	0	0		0		0	0		0	0	0		0			0
C7.6		0	9	0	0	0	0		0	0		0	0	0		0	0	0	1
C7.7		11	5	0	0	0	0		0	0		0	0	0		0	0	0	0
Mean/statior Mean cores		5.2 5.5	14.8 7.0	0.0		0.6	1.0).0).0	0.0 0.0		0.0 0.0	0.2 0.0	0.0		0.2 0.2	0.0	0.0 0.0	0.0 0.0
no./m2 (box)		130	370	0	0	15	25		0	0		0	5	0		5	0	0	0
no./m2 (core		110	140	0	0	0	0		0	0		0	0	0		4	0	0	0
							_												
No. species	s (box)	6																	

Station R1			Depth -4.5	0m AHD		56 364177	6331535		Sampled M	larch 10-11th	ו 2020					
Replicates		Polychaete		Polychaete	Gastropod	Gastropod	Bivalve	Bivalve Soletellina	Bivalve	Bivalve	Bivalve	Bivalve	Ophuroid	Barnacle	Fish	Crab
		thin	mud	thick	Nassarius	Bedeva	Corbula		Paphia	Anadara	Cyamiomactr			-		
R1.1 R1.2		4	1 5	0	0	0	0	3	0	0	0	0	0	0	0	0
R1.2 R1.3		4	2	1	0	0	1	0	1	0	0	0	0	0	0	0
R1.4		4	3	0	0	0	4	0	0	0	0	0	0	0	0	0
R1.5		3	2	0	0	0	1	1	0	0	0	0	0	0	0	0
R1.6 R1.7		1 0	2 1	0	0 0	0	0 0	0	0 0	0	0	0	0 1	0 0	0	0
Mean/station Mean cores	n (boxes)	3.8 0.5	2.6 1.5	0.2	0.0	0.0	1.4 0.0	0.8 0.0	0.2	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
no./m2 (box))	95	65	5	0.0	0.0	35	20	5	0.0	0.0	0.0	0.5	0.0	0.0	0.0
Mean cores		10	30	0	0	0	0	0	0	0	0	0	10	0	0	0
No. species No. species		6 3											Total Orga	anisms at S	tation	45
Station R2	1		Depth -4.5	0m AHD		56 365919	6330294		Sampled M	larch 10-11th	ר 2020 ר					
		Polychaete	Polychaete	Polychaete	Gastropod	Gastropod	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Ophuroid	Barnacle	Fish	Crab
Replicates		thin	mud	thick	Nassarius	Bedeva	Corbula	Soletellina	Paphia	Anadara	Cyamiomactr		Ophuroid	Damacie	FISH	Clab
R2.1		5	0	0	0	0	12	0	0	0	0	0	0	0	0	0
R2.2		2	1	1	0	0	5	0	1	0	0	0	0	0	0	0
R2.3 R2.4		1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
R2.4 R2.5		1 3	1	3	0	0	2	2	0	0	0	0	0	0	0	0
R2.6 R2.7		0	1	1	0	0	1 0	0	0	0	0	0	0	0	0	0
	<i>(</i>)															
Mean/station Mean cores	1 (boxes)	2.4 0.0	0.4 0.5	1.0 0.5	0.0 0.0	0.0	3.8 0.5	0.4 0.0	0.4	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
no./m2 (box) no./m2 (core		60 0	10 10	25 10	0	0	95 10	10 0	10 0	0	0	0	0	0	0	0
No. species	s (box)	6														
No. species	s (core)	3											Total Orga	anisms at S	tation	42
Station R3	(now IM5)		Depth -5.5	0m AHD		56 364660	6332992		Sampled M	larch 10-11th	n 2020					
Replicates		Polychaete thin	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Bivalve Paphia	Bivalve Anadara	Bivalve Cyamiomactr	Bivalve Trichomya	Ophuroid	Barnacle	Fish	Crab
R3.1	IM5.1	0	1	2	0	0	2	12	0	0	0	26	0	0	0	0
	IM5.2	0	0	1	0	0	1	9	0	0	0	22	0	0	0	0
	IM5.3	1	0	0	0	0	0	6	0	0	0	19	0	0	0	0
	IM5.4	2	1	0	0	0	2	10	0	0	0	0	1	0	0	0
R3.5	IM5.5	2	2	1	0	0	1	13	0	0	0	5	1	0	0	0
	IM5.6 IM5.7	0	1 0	0	0	0	1 0	2 2	0	0	1 0	2 8	1 0	0	0	0
Mean/station	n (boxes)	1.0	0.8	0.8	0.0	0.0	1.2	10.0	0.0	0.0	0.0	14.4	0.4	0.0	0.0	0.0
Mean cores		0.0	0.5	0.0	0.0	0.0	0.5	2.0	0.0	0.0	0.5	5.0	0.5	0.0	0.0	0.0
no./m2 (box) no./m2 (core		25 0	20 10	20 0	0	0	30 10	250 40	0	0	0 10	360 100	10 10	0	0	0
No. species No. species		7											Total Orga	anisms at S	tation	161
Station R4	(now IM6)		Depth -6.0	0m AHD		56 364771	6332763		Sampled M	larch 10-11th	n 2020					
Replicates		Polychaete thin	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Bivalve Paphia	Bivalve Anadara	Bivalve Cyamiomactr	Bivalve Trichomya	Ophuroid	Barnacle	Fish	Crab
	IM6.1	2	0	0	0	0	2	1	0	0	0	0	0	0	0	0
R4.2	IM6.2	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	IM6.3	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0
	IM6.4 IM6.5	0 4	1 0	0	0	0	3 1	0	0	0	0	0	0	0	0	0
	IM6.6	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0
	IM6.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean/station Mean cores	n (boxes)	2.4 0	0.2 0	0.0 0	0.0 0	0.0	1.6 0	0.2 1	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.0
no./m2 (box) no./m2 (core		60 0	5 0	0	0	0	40 0	5 63	0	0	0	0	0 63	0	0	0
No. species		4														
No. species		2											Total Orga	anisms at S	itation	22

)	Depth -6.0	0m AHD		56 364229	6333889		Sampled Ma	arch 10-11th	n 2020					
Replicates	Polychaete thin	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Bivalve Paphia	Bivalve Anadara	Bivalve Cyamiomactr	Bivalve Trichomya	Ophuroid	Barnacle	Fish	Crab
Teplicales		mua	UNICK	Nassanus	Dedeva	Conduia	Soletellina	Paprila	Anadara	Cyamomacu	пспотуа				
R5.1	2	1	0	0	0	3	1	0	0	0	0	0	0	0	0
R5.2	2	1	0	0	0	1 5	0	0	0	0	0	0	0	0	0
R5.3 R5.4	3	0	0	0	0	3	0	0	0	0	0	0	0	0	0
R5.5	2	0	0	0	0	9	3	0	0	0	0	0	0	0	0
		<u>^</u>			-	•	<u> </u>		0	-			0		<u>^</u>
R5.6 R5.7	1 0	0	0	0	0	0	2 0	0	0	0	0	0	0	0	0
Mean/station (boxes) Mean cores	2.4 0.5	0.4	0.0 0.0	0.0 0.0	0.0 0.0	4.2 0.0	1.0 1.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
no./m2 (box) no./m2 (core)	60 10	10 0	0	0	0	105 0	25 20	0	0	0	0	0	0	0	0
No. species (box)	4														
No. species (core)	2											Total Orga	anisms at S	tation	40
Station R6 (now IM8)	Depth -6.0	0m AHD		56 364533	6334146		Sampled Ma	arch 10-11th	1 2020					
Replicates	Polychaete thin	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Bivalve Paphia	Bivalve Anadara	Bivalve Cyamiomactr	Bivalve Trichomya	Ophuroid	Barnacle	Fish	Crab
R6.1	2	1	0	0	0	2	0	0	0	0	0	0	0	0	0
R6.2	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0
R6.3	0	2	0	0	0	3	7	0	0	0	0	0	0	0	0
R6.4 R6.5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.0.0	U	U	0	0	5	0	0	0	U	0	0	0	0	0	U
R6.6 R6.7	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean/station (boxes)	1.2	0.6	0.0	0.0	0.0	1.2	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mean cores	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
no./m2 (box) no./m2 (core)	30 0	15 10	0	0	0	30 0	35 0	0	0	0	0	0	0	0	0
No. species (box) No. species (core)	4											Total Orga	anisms at S	tation	22
Otation D7		Death C.O.			50.000000	0000050		0		0000					
Station R7	Polychaete	Depth -6.0 Polychaete	Polychaete	Gastropod	56 366232 Gastropod	6333856 Bivalve	Bivalve	Sampled Ma Bivalve	Bivalve	Bivalve	Bivalve	Ophuroid	Barnacle	Fish	Crab
Replicates		i olycnaete			Bedeva	Corbula	Soletellina	Paphia	Anadara	Cyamiomactr		Opharola	Damacic	1 1311	Ciab
	thin	mud	Terebellid	Nassarius	Dodona		oolotoliind	i apina							
	0	mud 0	Terebellid 0	0	0	1	0	0	0	1	0	0	0	0	0
R7.1 R7.2	0		0	0	0	1 0	0 0	0	0	0	0	0	0	0	0
R7.1 R7.2 R7.3	0 0 5	0 0 1	0 0 0	0 0 0	0 0 0	1 0 0	0 0 2	0 0 0	0 0 1	0	0 3	0	0 0	0	0
R7.1 R7.2 R7.3 R7.4	0 0 5 2	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	0 0 2 2	0 0 0 0	0 0 1 0	0 0 0	0 3 0	0 0 0	0 0 0	0 0 0	0 0 0
R7.1 R7.2 R7.3 R7.4	0 0 5	0 0 1	0 0 0	0 0 0	0 0 0	1 0 0	0 0 2	0 0 0	0 0 1	0	0 3	0	0 0	0	0
R7.1 R7.2 R7.3 R7.4 R7.5 R7.6	0 0 5 2 1 1	0 0 1 0 1 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 0 0 1 1	0 0 2 2 1	0 0 0 0 0	0 0 1 0 0	0 0 0 0	0 3 0 0	0 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0
R7.1 R7.2 R7.3	0 0 5 2 1	0 0 1 0 1	0 0 0 0	0 0 0 0	0 0 0 0 0	1 0 0 0 1	0 0 2 2 1	0 0 0 0	0 0 1 0 0	0 0 0 0	0 3 0 0	0 0 0 1	0 0 0 0	0 0 0	0 0 0 0
R7.1 R7.2 R7.3 R7.4 R7.5 R7.6	0 0 5 2 1 1	0 0 1 0 1 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 0 0 1 1	0 0 2 2 1	0 0 0 0 0	0 0 1 0 0	0 0 0 0	0 3 0 0	0 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0
R7.1 R7.2 R7.3 R7.4 R7.6 R7.6 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box)	0 0 5 2 1 1 3 	0 0 1 0 1 0 0 0 0 0 0 4 0.0	0 0 0 0 1 0 0.0 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 2 1 0 0 0 1.0 0.0 25	0 0 0 0 0 0 0 0 0 0.0 0.0	0 0 1 0 0 0 0 0 0 0 0 0 2 0.0	0 0 0 0 0 0 0 0 2 0.0 5	0 3 0 0 0 0 0 0 0 0 0 0 0 0 15	0 0 1 0 0 0 0 0.2 0.0 5	0 0 0 0 0 0 0 0 0.0 0.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0
R7.1 R7.2 R7.3 R7.4 R7.5 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box) no./m2 (core)	0 0 5 2 1 1 3 1.6 2.0 40 40	0 0 1 0 0 0 0 0.4 0.0	0 0 0 0 1 0.0 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 0 0 0.4 0.0	0 0 2 2 1 0 0 0 1.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 2 0.2	0 3 0 0 0 0 0 0 0.6 0.0	0 0 1 0 0 0 0.2 0.0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R7.1 R7.2 R7.3 R7.4 R7.6 R7.6 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box)	0 0 5 2 1 1 3 	0 0 1 0 1 0 0 0 0 0 0 4 0.0	0 0 0 0 1 0 0.0 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 2 1 0 0 0 1.0 0.0 25	0 0 0 0 0 0 0 0 0 0.0 0.0	0 0 1 0 0 0 0 0 0 0 0 0 2 0.0	0 0 0 0 0 0 0 0 2 0.0 5	0 3 0 0 0 0 0 0 0 0 0 0 0 0 15	0 0 1 0 0 0 0 0.2 0.0 5 0	0 0 0 0 0 0 0 0 0 0.0 0.0 0 0	0 0 0 0 0 0 0 0 0.0 0.0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0
R7.1 R7.2 R7.3 R7.4 R7.5 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box) no./m2 (core) No. species (box)	0 0 5 2 1 1 1 3 1.6 2.0 40 40	0 0 1 0 1 0 0 0 0 0 0 4 0.0	0 0 0 0 1 0.0 0.5 0 10	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 0 4 0.0 0 10 0	0 2 2 1 0 0 0 1.0 0.0 25	0 0 0 0 0 0 0 0 0 0.0 0.0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 0 0 0 0 0 0 0 0 0 0 0 15	0 0 1 0 0 0 0 0.2 0.0 5 0	0 0 0 0 0 0 0 0 0.0 0.0 0 0	0 0 0 0 0 0 0 0 0.0 0.0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
R7.1 R7.1 R7.2 R7.3 R7.3 R7.4 R7.5 R7.6 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box) no./m2 (core) No. species (box) No. species (core) Station R8 R8	0 0 5 2 1 1 1 3 3 1.6 2.0 40 40 40 8 2	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0.0 0.5 0 10 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 0 4 0.0 0 10 0	0 2 2 1 0 0 0 1.0 0.0 25	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 0 0 0 0 0 0 0 15 0 8ivalve	0 0 1 0 0 0 0 0.2 0.0 5 0	0 0 0 0 0 0 0 0 0.0 0.0 0 0	0 0 0 0 0 0 0 0 0.0 0.0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
R7.1 R7.2 R7.3 R7.4 R7.5 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box) no./m2 (core) No. species (box) No. species (core) Station R8 Replicates	0 0 5 2 1 1 1 3 3 1.6 2.0 40 40 40 40 8 2 2	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0.0 0.5 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 56 364323 Gastropod Bedeva	1 0 0 0 0 0 0 4 0.0 10 0 63322010 Bivalve Corbula	0 0 2 2 1 0 0 0 1.0 0.0 25 0 8 ivalve Soletellina	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 5 0 0 5 0 0 4 7 10 11tt Bivalve <i>Anadara</i>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 0 0 0 0 0 0 15 0 8 ivalve <i>Trichomya</i>	0 0 1 0 0 0 0 5 0 0 Total Orga	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 2 3 Crab
R7.1 R7.1 R7.2 R7.3 R7.3 R7.4 R7.5 R7.6 R7.6 R7.7 Wean/station (boxes) Mean cores no./m2 (box) no.m2 (core) No. species (box) No. species (core) Station R8 Replicates R8.1 R8.1	0 0 5 2 1 1 1 1 3 3 1.6 2.0 40 40 40 40 8 2	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 364323 56 364323	1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 2 1 0 0 0 0 1.0 0.0 25 0 8ivalve	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 arch 10-11th Bivalve	0 0 0 0 0 0 0 0 0 0 0 5 0 0 2020 8ivalve	0 3 0 0 0 0 0 0 0 0 15 0 8ivalve	0 0 1 0 0 0 0 5 0 0 Total Orga	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 23
R7.1 R7.2 R7.3 R7.4 R7.5 R7.6 R7.7 Mean/station (boxes) Mean/station (boxes) Mean/station (box) no./m2 (box) no./m2 (core) No. species (box) No. species (core) Station R8 Replicates R8.1 R8.2	0 0 5 2 1 1 1 3 3 1.6 2.0 40 40 40 40 8 2 2 90ychaete thin 1 0 4	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 56 364323 Gastropod Bedeva 0 0 0	1 0 0 0 0 1 0 0 0 0 0 63322010 Bivalve Corbula 0 2 0	0 0 2 2 2 1 1 0 0 0 25 0 25 0 8 1 8 1 8 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 0 0 0 0 0 0 0 0 15 0 8 15 0 7 7 17 0 7 7 17 0 7 7 17 0 7 7 7 17 17 7 17 17 17 17 17 17 17 17 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 anisms at S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 2 3 2 3 0 0 0 0 0
R7.1 R7.1 R7.2 R7.3 R7.3 R7.4 R7.5 R7.6 R7.6 R7.7 Wean/station (boxes) Meanores no./m2 (box) no./m2 (core) No. species (box) No. species (core) Station R8 Replicates R8.1 R8.2 R8.3 R8.4	0 0 5 2 1 1 1 3 3 1.6 2.0 40 40 40 40 8 2 2 9 0lychaete thin 1 0 4 3	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0.0 0.5 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 56 364323 Gastropod Bedeva 0 0 0 0	1 0 0 0 1 0 0 0 0 0 0 63322010 8ivalve Corbula 0 2 0 0 0	0 0 2 2 2 1 0 0 0 0 25 0 25 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 2020 Bivalve Cyamiomactr 0 0 0	0 3 0 0 0 0 0 0 0 0 5 0 0 7 7 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 5 0 0 7 0 0 7 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 arnisms at S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0
R7.1 R7.1 R7.2 R7.3 R7.3 R7.4 R7.5 R7.6 R7.6 R7.7 Wean/station (boxes) Meanores no./m2 (box) no./m2 (core) No. species (box) No. species (core) Station R8 Replicates R8.1 R8.2 R8.3 R8.4	0 0 5 2 1 1 1 3 3 1.6 2.0 40 40 40 40 8 2 2 90ychaete thin 1 0 4	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0.0 0.5 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 56 364323 Gastropod Bedeva 0 0 0	1 0 0 0 0 1 0 0 0 0 0 63322010 Bivalve Corbula 0 2 0	0 0 2 2 2 1 1 0 0 0 25 0 25 0 8 1 8 1 8 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 5 0 0 5 0 0 4 7 5 0 0 4 7 8 10 11tf 8 10 11tf 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 0 0 0 0 0 0 15 0 0 8 ivalve <i>Trichomya</i> 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 8 arnisms at S 8 Barnacle 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0
R7.1 R7.1 R7.2 R7.3 R7.3 R7.4 R7.5 R7.6 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box) no.m2 (core) No. species (box) No. species (core) Station R8 Replicates R8.1 R8.3 R8.4 R8.4 R8.5 R8.6	0 0 5 2 1 1 1 3 3 1.6 2.0 40 40 40 40 40 8 2 2 9 0 9 0 9 0 9 0 9 0 9 0 9 1	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0.0 0.5 0 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 56 364323 Gastropod Bedeva 0 0 0 0 0 0 0	1 0 0 0 0 1 0 0 0 0 10 0 0 63322010 8ivalve Corbula 0 2 0 0 0 1 1 2	0 0 2 2 2 1 0 0 0 0 25 0 8 50 1 8 1 0 0 0 0 0 0 0 0 0 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0 0	0 3 0 0 0 0 0 0 0 15 0 15 0 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 5 0 0 7 0 0 7 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 tation Fish	0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0
R7.1 R7.1 R7.2 R7.3 R7.3 R7.4 R7.5 R7.6 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box) no.m2 (core) No. species (box) No. species (core) Station R8 Replicates R8.1 R8.3 R8.4 R8.4 R8.5 R8.6	0 0 5 2 1 1 1 3 3 1 6 2.0 40 40 40 40 40 8 2 2 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 56 364323 56 364323 56 364323 6astropod Bedeva 0 0 0 0	1 0 0 0 0 1 0 0 0 0 0 63322010 Bivalve Corbula 0 2 0 0 0 1	0 0 2 2 2 1 1 0 0 0 25 0 25 0 8 1 8 1 8 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 5 0 0 5 0 0 5 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 0 0 0 0 0 0 0 15 0 0 15 0 0 7 <i>Trichomya</i> 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 5 0 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0
R7.1 R7.1 R7.2 R7.3 R7.3 R7.4 R7.5 R7.5 R7.6 R7.7 Wean/station (boxes) Mean cores no./m2 (box) no.m2 (core) No. species (box) No. species (core) Station R8 Replicates R8.1 R8.3 R8.4 R8.4 R8.5 R8.4 R8.6 R8.7 Wear/station (boxes) Mean/station (boxes)	0 0 5 2 1 1 1 3 3 1.6 2.0 40 40 40 40 40 8 2 2 9 0 9 0 9 0 9 0 9 0 9 0 9 1	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0.0 0.5 0 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 56 364323 Gastropod Bedeva 0 0 0 0 0 0 0	1 0 0 0 0 1 0 0 0 0 10 0 0 63322010 8ivalve Corbula 0 2 0 0 0 1 1 2	0 0 2 2 2 1 0 0 0 0 25 0 8 50 1 8 1 0 0 0 0 0 0 0 0 0 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0 0	0 3 0 0 0 0 0 0 0 15 0 15 0 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 5 0 0 7 0 0 7 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 tation Fish	0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0
R7.1 R7.1 R7.2 R7.3 R7.3 R7.4 R7.5 R7.5 R7.6 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box) no./m2 (core) No. species (core) No. species (core) Station R8 Replicates R8.1 R8.2 R8.3 R8.4 R8.5 R8.6 R8.7 Mean/station (boxes) Mean cores mo./m2 (box) Mean/station (boxes)	0 0 5 2 1 1 1 3 3 1.6 2.0 40 40 40 40 40 40 40 40 40 40 40 1 1 1 1	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0.0 0.5 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 56 364323 Gastropod Bedeva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 63322010 Bivalve Corbula 0 2 0 0 0 1 1 2 0 0	0 0 2 2 2 1 0 0 0 0 25 0 25 0 8 100 8 0 8 100 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0 0 0	0 3 0 0 0 0 0 0 15 0 15 0 7 7 7 0 7 7 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 5 0 0 Total Orga O phuroid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 tation Fish 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0
R7.1 R7.2 R7.2 R7.3 R7.4 R7.5 R7.6 R7.7 Mean/station (boxes) Mean cores no./m2 (box) no./m2 (core) No. species (box) No. species (core)	0 0 0 5 2 1 1 1 3 3 1.6 2.0 40 40 40 8 2 2 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 56 364323 Gastropod Bedeva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 63322010 Bivalve Corbula 0 0 0 0 1 1 0 0 1 5	0 0 2 2 2 1 0 0 0 25 0 25 0 8 10 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0 0 0	0 3 0 0 0 0 0 15 0 15 0 7 7 15 0 7 7 15 0 7 15 0 7 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 5 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0

Station R9)		Depth -6.0	0m AHD		56 366232	6331210		Sampled M	arch 10-11th	n 2020					
Replicates		Polychaete thin	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Bivalve Paphia	Bivalve Anadara	Bivalve Cyamiomactr	Bivalve Trichomya	Ophuroid	Barnacle	Fish	Crab
R9.1		3	5	0	0	0	0	1	0	0	0	0	0	0	0	0
R9.2		5	1	0	0	0	11	4	0	0	0	0	0	0	0	0
R9.3		4	1	0	0	0	1	1	0	0	0	0	0	0	0	0
R9.4 R9.5		4	0 4	0	0	0	17 2	1	0	0	0	0	0	0	0	0
R9.6 R9.7		1	1	0	0	0	1 0	0	0	0	0	0	0	0	0	0
Mean/statior	n (boxes)	5.2	2.2	0.0	0.0	0.0	6.2	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mean cores		2.0	1.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
no./m2 (box) no./m2 (core		130 40	55 20	0	0	0	155 10	35 0	0	0	0	0	0	0	0	0
No. species No. species		4											Total Orga	anisms at S	tation	7!
													rotal orge			
Station R1	10		Depth -6.0			56 365172	6334708		Sampled M							
Replicates		Polychaete thin	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Bivalve Paphia	Bivalve Anadara	Bivalve Cyamiomactr	Bivalve Trichomya	Ophuroid	Barnacle	Fish	Crab
R10.1		1	2	0	0	0	0	1	0	0	0	0	0	0	0	0
R10.2		1	2	0	0	0	0	0	0	0	0	0	0	0	0	0
R10.3 R10.4		6 3	2	0	0	0	0	0	0	0	0	0	0	0	0	0
R10.5		2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
R10.6		0	1	0	0	0	2	0	0	0	0	0	0	0	0	0
R10.7			1				1							0		
Mean/statior Mean cores		2.6 1.0	2.8 1.0	0.4	0.0	0.0	0.0 1.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
no./m2 (box) no./m2 (core		65 20	70 20	10 0	0 0	0	0 30	5 0	0 0	0	0	0	0	0	0	0
No. species No. species		4											Total Orga	anisms at S	tation	30
Station R1	11		Depth -6.0			56 367072	6333638		Sampled M							
Replicates		Polychaete	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Bivalve Paphia	Bivalve Anadara	Bivalve Cyarniomactr	Bivalve Trichomya	Ophuroid	Barnacle	Fish	Crab
R11.1		5	0	0	0	0	0	1	0	0	0	0	0	0	0	0
R11.2 R11.3		3	1	0	0	0	0	0	0	0	0	0	0	0	0	0
R11.4		5	1	0	0	0	0	0	0	0	0	0	0	0	0	0
R11.5		6	3	0	0	0	0	0	0	0	0	0	0	0	0	0
R11.6 R11.7		0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean/statior		4.2	1.2	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mean cores		0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0
no./m2 (box) no./m2 (core		105	10	0	0	0	5 0	5 0	0	0	0	0	10	0	0	0
No. species No. species		4											Total Orga	anisms at S	tation	29
Station IM ²	1		Depth -4.5	0m AHD		56 364738	6330734		Sampled M	arch 10-11th	n 2020					
		Polychaete			Gastropod	Gastropod	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Ophuroid	Barnacle	Sponge	Dosinia
Replicates		thin	mud	thick	Nassarius	Bedeva	Corbula	Soletellina	Paphia	Anadara	Cyamiomactr		opnarolu	Samable	oponge	Sosilia
IM1.1 IM1.2		3 5	3 2	0	0	0	1 0	0 3	0	0	0	0	1 1	0	0	0
IM1.2		4	2	0	0	0	3	0	0	0	0	0	0	0	0	0
M1.4		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M1.5		2	0	0	0	0	1	0	0	0	0	1	0	0	0	0
IM1.6 IM1.7		1	2 3	0	0	0	1 0	0	0	0	0	0	0	0	0	0
Mean/statior	n (hovee)	3.2	1.4	0.4	0.0	0.0	1.0	0.6	0.0	0.0	0.0	0.2	0.4	0.0	0.0	0.0
Mean cores		1.0	2.5	0.4	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.2	0.4	0.0	0.0	0.0
no./m2 (box) no./m2 (core		80 20	35 50	10 0	0 0	0	25 10	15 0	0 0	0	0	5 0	10 0	0	0	0
No. species	s (hoy)	7														

Replicates										arch 10-11t						
Replicates		Polychaete	Polychaete	Polychaete	Gastropod	Gastropod	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Ophuroid	Barnacle	Sponge	Crab
		thin	mud	thick	Nassarius	Bedeva	Corbula	Soletellina	Paphia	Anadara	Cyamiomactr		opharoid	Bamabio	opongo	onab
											-,					
M2.1		1	0	0	0	0	0	4	0	0	0	34	0	0	0	0
M2.2		2	4	1	0	0	0	0	0	0	0	10	0	0	0	0
M2.3		4	2	0	0	0	0	14	0	0	0	6	1	0	0	0
M2.4		2	0	0	0	0	0	0	0	0	0	33	0	0	0	1
M2.5		1	0	2	0	0	0	5	0	0	0	3	2	0	0	0
M2.6		1	1	0	0	0	0	0	0	0	0	5	0	0	0	0
M2.7		3	0	0	0	0	0	0	0	0	0	1	1	0	0	2
Mean/station (b		2.0	1.2	0.6	0.0	0.0	0.0	4.6	0.0	0.0	0.0	17.2	0.6	0.0	0.0	0.2
Mean cores	0.000	2.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.5	0.0	0.0	1.0
viean cores		2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.5	0.0	0.0	1.0
no./m2 (box)		50	30	15	0	0	0	115	0	0	0	430	15	0	0	5
no./m2 (core)		40	10	0	0	0	0	0	0	0	0	60	10	0	0	20
10.7112 (0010)		40	10	0	0	0	0	0	0	0	0	00	10	0	0	20
No. species (b	oox)	7														
No. species (c	core)	5											Total Orga	anisms at S	tation	13
Station IM3			Depth -5.5	0m AHD		56 364693	6332101		Sampled M	arch 10-11t	h 2020					
									<u> </u>							
		Polychaete	Polychaete	Polychaete	Gastropod	Gastropod	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Bivalve	Ophuroid	Barnacle	Fish	Crab
Replicates		thin	mud	thick	Nassarius	Bedeva	Corbula	Soletellina	Paphia	Anadara	Cyamiomactr	Trichomya				
M3.1		3	2	0	0	0	0	0	0	0	0	0	0	0	0	0
M3.2		2	1	0	0	0	1	1	0	0	0	0	0	0	0	0
M3.3		3	0	0	0	0	0	1	0	0	0	0	0	0	0	0
M3.4		2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
M3.5		3	0	0	0	0	1	1	0	0	0	0	0	0	0	0
M3.6		2	0	0	0	0	0	1	0	0	0	0	0	0	0	0
M3.7		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Mean/station (b		2.6	0.8	0.0	0.0	0.0	0.4	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mean cores	oxes)	1.0	0.0	0.0	0.0	0.0	0.4	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
viean cores		1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
no./m2 (box)		65	20	0	0	0	10	15	0	0	0	0	0	0	0	0
no./m2 (core)		20	0	0	0	0	0	20	0	0	0	0	0	0	0	0
(00.0)																
No. species (b	oox)	4														
No. species (c	core)	2											Total Orga	anisms at S	tation	2
Station IM4			Depth -6.0	0m AHD		56 364673	6332705		Sampled M	arch 10-11t	h 2020					
Replicates		Polychaete thin	Polychaete mud	Polychaete thick	Gastropod Nassarius	Gastropod Bedeva	Bivalve Corbula	Bivalve Soletellina	Bivalve Dosinia	Bivalve Anadara	Bivalve Cyamiomactr	Bivalve Trichomya	Ophuroid	Barnacle	Fish	Crab
Copilodico		um	muu	UIICK	เงลรรสมปร	Deveva	Joinnid	SURGUINA	Dosinia	Anauala	Syamomacti	попотнуа				
M4.1		3	1	0	0	0	0	0	0	0	0	0	0	0	0	0
M4.2		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
M4.3		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M4.4		3	0	0	0	0	0	0	0	0	0	0	1	0	0	0
M4.5		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
												-				-
M4.6		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
M4.7		3	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean/station (b	ovec)	1.8	0.2	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
Mean cores	0,62)	1.6	0.2	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
			0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	5.0	0.0	0.0	5.0
		45	5	0	0	0	0	5	0	0	0	0	5	0	0	0
10./m2 (hox)		30	10	0	0	0	10	0	0	0	0	0	0	0	0	0
no./m2 (box) no./m2 (core)					-	-		-	-	-	-	-	-	-	-	-
no./m2 (box) no./m2 (core)																
no./m2 (core) No. species (b		4														
no./m2 (core)		4 3											Total Orga	anisms at S	tation	1:

A total of 1032 benthic marine organisms greater than 1 mm in size were captured in the study area of Lake Macquarie during the March 2020 survey of 22 stations. Twelve species of benthic marine organisms were found in the samples. The fauna included three species of polychaete worm (Plate 1a); six species of bivalve (Plate 1c); one species of brittle star (Plate 1d); one crab species and a sponge (**Table 3**).

In March 2020, the greatest numbers of organisms were taken at stations C5 (73), R9 (75), C7 (110), IM2 (132) and R3 (161). The least numbers of organisms were collected at stations C4 (9), R8 (12), IM4 (12) and C6 (16) (**Table 3**).

Polychaete worms such as *Sthenelais pettiboneae* were the most commonly found organisms in the benthic muds during the March 2020 survey. The bivalves *Trichomya hirsuta*, *Soletellina alba* and *Corbula truncata* were also found relatively frequently. The brittle star *Ophionereis schayeri* and juvenile crabs were found amongst the mussels (**Table 3**).

Table 4 shows the number of species found at each station between February 2012 and March 2020. It shows diversity has not changed significantly compared to previous years, and diversity between Control, Reference and Impact stations do not vary greatly.

Station	C1	C2	C3	C4	C5	C6	R1	R2	R3	R4	R5	R6	R7	R8	R9
Feb 2012	10	5	5	7			8	8	5	5					
Sept 2012	3	6	4	4			6	3	4	5					
March 2013	4	5	7	7			6	5	6	5					
Sept 2013	6	6	3	7			5	6	5	4					
March 2014	4	3	5	5			6	4	5	3	4	3			
Sept. 2014	3	4	4	8			6	5	6	6	3	3			
March 2015	3	3	5	3			5	3	6	5	3	3			
Sept. 2015	5	4	4	3			5	3	4	6	5	4			
March 2016	6	4	5	5	5		6	5	6	4	4	4	8		
Sept. 2016	7	3	6	5	4	8	8	4	5	6	6	7	7	5	8
March 2017	2	4	5	3	5	5	4	5	4	5	4	4	4	3	5
Sept. 2017	4	4	4	4	4	5	4	3	6	5	4	4	4	5	4
March 2018	4	4	8	4	4	3	7	8	5	4	6	3	4	3	4
Sept. 2018	3	4	4	6	5	5	4	4	5	5	5	4	6	4	5
March 2019	6	3	4	4	6	5	4	5	7	3	5	4	4	4	4
Sept. 2019	5	6	5	5	4	5	4	3	7	4	4	4	5	4	4
March 2020	5	6	6	4	7	3	6	6	7	4	4	4	8	3	4

 Table 4.
 Number of species found at each Station from February 2012 to March 2020

Station	C7	IM1	IM2	IM3	IM4	R10	R11
Feb 2012		7	4	4	5		
Sept 2012		4	4	3	5		
March 2013		7	5	5	5		
Sept 2013		4	3	4	5		
March 2014		5	9	4	5		
Sept. 2014		5	6	3	6		
March 2015		5	4	4	5		
Sept. 2015		5	5	4	4		
March 2016		6	6	3	4		
Sept. 2016		6	4	6	3		
March 2017		3	4	3	4		
Sept. 2017		5	5	5	5		
March 2018	5	5	7	3	4	4	4
Sept. 2018	5	4	8	4	4	4	4
March 2019	3	5	5	2	4	6	6
Sept. 2019	6	6	5	7	5	4	3
March 2020	6	7	7	4	4	4	4

Table 5 shows the mean number of marine benthic organisms for each station and species sampled in

 March 2020 (Sieve boxes only). The table includes depths relative to AHD for each station.

Depth (m) Polychaset Polychaset Restrocted Gastropord Bitvalve Bitvalve <th>200</th> <th></th> <th></th> <th></th> <th>></th> <th>200</th> <th>2020</th> <th></th> <th>; ; ; ;</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	200				>	200	2020		; ; ; ;								
		Depth (m)	Polychaete	Polychaete	Polychaete	Gastropod		Bivalve	Bivalve	Bivalve	Bivalve	Bivalve		Bivalve	Ophuroid	Crab S	sponge
45 22 06 0 3 06 02 0 <th></th> <th></th> <th>thin</th> <th></th> <th>thick</th> <th>Nassarius</th> <th>Bedeva</th> <th>Corbula</th> <th>Soletellina</th> <th>Paphia</th> <th>Anadara</th> <th>Cyamiomactra</th> <th></th> <th>Dosinia</th> <th></th> <th></th> <th></th>			thin		thick	Nassarius	Bedeva	Corbula	Soletellina	Paphia	Anadara	Cyamiomactra		Dosinia			
45 12 22 0.4 0 4 14 0<	5	-4.5				0	0	С		0.2	0	0		0	0	0	0
55 26 28 02 0 14 0.8 0<	C2	-4.5			0			4		0	0	0.4		0	0	0	0
6 12 0.2 0	ទ	-5.5			0			1.4			0	0.2		0	0	0	0
	C4	φ						0.2		0	0	0		0	0	0	0
55 0 02 0 <	C5	φ			0	0		0		0	0	0		0.4	0.6	0	0.2
55 52 148 0 0.6 1 0 0.6 0 0.6 0 0.6 0	ce Ce	-5.5						2		0	0	0		0	0	0	0
	C7	-5.5					Ö	-		0	0	0.2		0	0.2	0	0
-45 24 0.4 1 0 38 0.4 0	_	-4.5			0	0	0	4.1		0.2	0			0	0	0	0
(M5) -5.5 1 0.8 0.4 0 0 144 0 </td <td>2</td> <td>-4.5</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>3.8</td> <td></td> <td>0.4</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	2	-4.5				0	0	3.8		0.4	0			0	0	0	0
(MM) 6 24 0.2 0 1.6 0.4 0.2 0 0 0.5 0.45 0.4 0	3 (IM5)	-5.5					0	1.2		0	0		14	0	0.4	0	0
(M) 55 24 0.4 0 4.2 1 0	4 (IM6)	φ					0	1.6		0	0			0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 (IM7)	-5.5						4.2		0	0			0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		φ						1.2		0	0			0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		φ						0.4		0	0.2			0	0.2	0	0
45 52 22 0	~	-5.5						0.6		0	0			0	0	0	0
-5.5 2.8 0.4 0<		-4.5						6.2		0	0	0		0	0	0	0
- 42 1.2 0 0.2 0 <td>0</td> <td>-5.5</td> <td></td> <td></td> <td>Ö</td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0	-5.5			Ö			0		0	0	0		0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	Ģ						0.2		0	0	0		0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-4.5			Ö	0	0	~	0.6		0	0		0	0.4	0	0
-5.5 -5.6 0.8 0 -5.5 0.8 0 0 -118 0.02 0 0 -118 0.02 0 0 -119 0.1 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 -110 0 0 0 0 -110 0 0 0 0 -110 0 0 0 0 -110 0 0 0 0 -110 0 0 0 0 -110 0 <td>2</td> <td>-4.5</td> <td></td> <td></td> <td>Ö</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0.6</td> <td>0.2</td> <td>0</td>	2	-4.5			Ö		0	0			0	0		0	0.6	0.2	0
	e	-5.5					0	0.4	0.6	0	0			0	0	0	0
	4	မှ		0			0	0		0	0			0	0.2	0	0

Sediment Analysis

The sediment in the mud basin of Lake Macquarie off Summerland Point, in Chain Valley Bay and Bardens Bay was largely composed of fine grey or black mud that sometimes was mildly plastic in nature (able to be molded into a coherent shape) or very fine and fluid, with a small amount of medium to fine black sand in some samples. Large amounts of large and small shell fragments were also present in the sediment at most stations sampled.

A description of the sediment samples collected in March 2020 is shown in Table 6.

Station	Description	Volume (mL)
C1	Fine black mud with some shell	250
C2	Fine black mud with some shell	250
C3	Fine black mud with some shell	250
C4	Fine black mud with some shell	250
C5	Fine black mud, sand and shell	250
C6	Fine black mud	250
C7	Fine black mud, sand with some shell	250
R1	Fine black mud with some black sand	250
R2	Fine black mud with some shell	250
R3 (IM5)	Fine black mud with some shell	250
R4 (IM6)	Fine black mud with shell	250
R5 (IM7)	Fine black mud	250
R6	Fine black mud with some shell	250
R7	Fine black mud with some coarse shell and sand	250
R8	Fine black mud with some shell	250
R9	Fine black mud with some shell	250
R10	Fine black mud, coarse sand and some shell	250
R11	Fine black mud with shell	250
IM1	Fine black mud, sand and coarse shell	250
IM2	Fine black mud and large shell fragments	250
IM3	Fine black mud and some shell	250
IM4	Fine black mud and some shell	250

Table 6.Description of Sediment collected from Sampling Stations in March 2020

Table 7 shows the percentage of silt in the sediment at each station from February 2012 to March 2020.

	Feb 2012	Sept. 2012	Mar. 2013	Sept 2013	Mar. 2014	Sept. 2014	Mar. 2015	Sept. 2015	March 2016
	% Mud	% Mud	% Mud	% Mud	% Mud	% Mud	% Mud	% Mud	% Mud
C1	92	76	60	100	80	72	71	80	96
C2	92	80	60	96	76	77	75	100	96
C3	80	76	64	100	80	75	81	74	96
C4	80	78	64	55	80	75	81	70	96
C5									84
C6									
C7									
R1	80	80	88	40	60	82	80	80	96
R2	94	80	88	60	92	84	97	80	99
R3 IM5	80	82	72	80	88	87	84	80	100
R4 IM6	88	80	80	68	60	85	94	80	100
R5 IM7					80	75	88	65	100
R6					76	78	79	76	100
R7									
R8									
R9									
R10									
R11									
IM1	86	72	68	84	60	77	79	44	100
IM2	80	75	45	60	70	87	78	80	96
IM3	96	75	53	65	72	77	78	75	100
IM4	80	73	56	64	55	86	85	79	98

Table 7.Percent mud in sediment from each station – February 2012 to March 2020.

	Sept. 2016	Mar 2017	Sept 2017	Mar 2018	Sept. 2018	March 2019	Sept. 2019	March 2020	
	% Mud	% Mud	% Mud	% Mud	% Mud	% Mud	%Mud	%Mud	
C1	90	68	94	80	80	80	100	94	
C2	80	92	80	80	64	70	100	86	
C3	90	80	100	92	80	100	100	96	
C4	75	98	100	80	40	80	100	92	
C5	90	92	80	92	64	60	80	29	
C6	80	92	100	84	60	70	100	100	
C7				80	60	80	100	29	
R1	70	96	100	80	80	80	96	96	
R2	90	80	92	80	84	84	80	80	
R3 IM5	90	96	100	80	96	92	80	92	
R4 IM6	90	96	100	78	92	80	84	98	
R5 IM7	90	88	100	70	80	80	100	94	
R6	98	98	80	80	78	96	100	92	
R7	90	94	92	50	80	98	84	92	
R8	80	98	100	80	82	92	100	92	
R9	98	98	96	80	84	70	100	80	
R10				80	96	80	84	80	
R11				80	30	50	92	100	
IM1	90	76	96	80	60	80	80	70	
IM2	98	98	98	92	70	60	80	80	
IM3	99	96	100	92	96	80	92	90	
IM4	99	84	92	100	80	80	92	92	

Water Quality Profiles - March 2020

At each station, a water quality profile was taken using a calibrated Yeo-Kal 618RU Analyser. Measurements were taken at the surface and at 0.5m intervals to the lake bed. Units of measurement were: Temperature (TEMP) - degrees Celsius; Conductivity (COND) - mS/cm; Salinity (SAL) - parts per thousand; pH; Dissolved Oxygen - % saturation and mg/L; and Turbidity (TURB) - NTU (**Table 8, Appendix 1**).

Up until recently, little significant rain had fallen in the catchments of Lake Macquarie. Annual rainfall in the Cooranbong (Lake Macquarie AWS) region was 839.8 mm in 2017; 859.8 mm in 2018 and 763.4 mm

in 2019 (BOM Station Number 061412). The lack of rainfall caused the salinity of the water column to become very high, over 39 parts per thousand in March 2019, and almost uniform from surface to bottom. In August and September 2019, the Lake Macquarie region received heavy rainfall with 111.2 mm and 64.8 mm falling respectively during those months (BOM Station Number 061412). This rainfall lowered the salinity of water in the lake to around 36 parts per thousand in 2019. Lake Macquarie catchment received again heavy rainfall in January and February 2020 with 79.6 mm and 335.4 mm falling (BOM Station Number 061412). This and the recent rainfall in March 2020 has lowered the salinity of water in the lake to around 36 parts per thousand 10 mm and 335.4 mm falling (BOM Station Number 061412). This and the recent rainfall in March 2020 has lowered the salinity of water in the lake to around 33 parts per thousand (**Table 8; Appendix 1**).

In March 2020, water quality in the study area (**Figure 1**) was remarkably uniform (**Appendix 1**). Throughout the water column, salinity ranged from 32.7 ppt to 33.9 ppt and conductivity ranged from 50.01 mS/cm to 51.59 mS/cm (**Appendix 1**). pH was between 8.52 and 9.05, and water temperature was very warm ranging from 24.4°C to 26.4°C (**Appendix 1**). Only dissolved oxygen varied throughout the water column. During the period of sampling, the stations with the lowest dissolved oxygen were R6 with 41.8 % Sat; IM2 with 43.8 % Sat; IM3 with 45.6 % Sat and IM4 with 41.6 % Sat (**Table 8, Appendix 1**).

Station	Temperature °C	Conductivity mS/cm	Salinity ppt	Dissolved Oxygen % sat	Dissolved Oxygen mg/L	рН	Turbidity NTU
C1	24.61	50.45	33.0	76.8	5.24	8.73	8.4
C2	24.64	50.49	33.2	79.2	5.47	8.80	3.1
C3	24.92	50.92	33.4	64.1	4.30	8.71	7.9
C4	25.12	51.11	33.5	50.3	3.41	8.66	6.0
C5	24.50	50.45	33.1	77.5	5.32	8.90	4.5
C6	25.09	51.06	33.4	55.7	3.79	8.66	4.6
C7	24.73	50.27	32.9	77.8	5.36	8.76	7.1
R1	24.90	50.44	33.0	72.4	4.90	8.69	8.0
R2	24.59	50.35	32.9	71.1	5.01	8.80	6.7
R3 (IM5)	25.00	51.26	33.6	61.0	4.15	8.60	5.2
R4 (IM6)	25.03	51.28	33.7	54.9	3.73	8.64	5.3
R5 (IM7)	25.15	51.43	33.9	39.1	2.58	8.51	6.8
R6	25.5	51.02	33.6	41.8	2.90	8.54	4.8
R7	24.94	51.22	33.7	60.2	4.12	8.70	2.2
R8	25.02	50.97	33.4	56.7	3.85	8.63	5.4

Table 8Physical characteristics of the bottom water - 10th and 11th March 2020

R9	24.44	50.20	32.9	79.6	5.48	8.84	1.4
R10	24.60	50.15	32.9	74.7	5.19	8.76	4.6
R11	24.41	50.72	33.2	77.5	5.37	8.80	5.9
IM1	24.70	50.39	33.0	80.4	5.58	8.83	6.8
IM2	25.07	51.32	33.7	43.8	2.98	8.54	7.7
IM3	25.10	51.02	33.6	45.6	3.12	8.54	10.3
IM4	24.98	51.45	33.9	41.6	2.86	8.51	7.9

Analysis of Data

Statistics

Principal component (PC) biplots or multivariate scatterplots produced by the R-statistical program were used to explore the relationship between benthos study sites, animal species found in the sediment, and water quality variables at the lake bed. Points in the matrix were obtained by standardizing the data by subtracting the variable (column) mean from the species (cell) mean and dividing the subsequent value by the variable or column mean (Gabriel, 1971; Gabriel and Odoroff, 1990).

Biplots

A biplot is a particular kind of scatterplot used for displaying multivariate data which results from mapping a matrix of field observations, X, into a 2-dimensional graphical display. The name derives from the fact that this is a *joint* display of the rows and columns of X. Sample units (rows) are shown by points and variables (columns) by arrows. Biplots have several appealing properties. Firstly, they are capable of presenting graphically large amounts of information on composition, structure and relationships with surpassing ease and efficiency. It enables a truly global look at the data.

Interpretation of Biplots

Sample Points

- The proximity of any pair of sample points is directly proportional to their resemblance with respect to all the variables studied, the closer the points the greater the resemblance;
- Points close to the origin tend to be representative of the sample as a whole, that is, they tend to be average samples,
- Points far from the origin are atypical in that they possess usually large or small values of one or more variables.

Variable Arrows

- The origin of the configuration of arrows marks the mean value of each variable, an important reference point.
- Arrows can be extended through the origin (by eye) in either direction to any desired extent.
- With increasing distance from the origin along an arrow in the direction of an arrow, the value of the variable increases steadily above its mean; similarly, with increasing distance from the origin along an arrow extended by eye in the opposite direction, the value of a variable falls increasingly below its mean.
- Arrow length is directly proportional to the correlation coefficient, r, between the two variables. The smaller the angle the stronger the correlation. Variables x and y with arrows subtending an angle of:

1.	0° are perfectly correlated	r _{xy} = 1
2.	90° are strictly uncorrelated	$r_{xy} = 0$
3.	0° ≤ Angle < 90°	$0 \le r_{xy} < 1$
4.	90° ≥ Angle ≤180°	0< r _{xy} < -1

From 3 it follows that variables whose arrows subtend angles less than 90° are positively correlated, and from 4, that variables whose arrows subtend angles greater than 90° are negatively correlated; in particular, where the angle is 180° , $r_{xy} = -1$.

In general, long arrows can be regarded as more useful in interpretation than short arrows. They have greater influence in differentiating sites.

Relationship between benthic organisms, stations and water quality

Figure 5 shows a biplot representing the relationship between marine benthic organisms, stations, water depth and dissolved oxygen for the March 2020 survey.

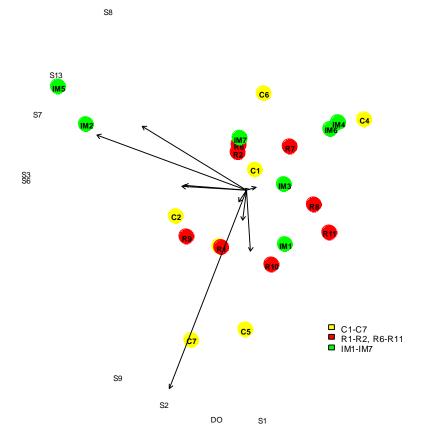


Figure 5.Relationship between benthic organisms and sampling stations – Lake Macquarie
benthos survey March 2020 (PC biplot goodness-of-fit: 66.4%)

Station		Organism
C1 - Control Station C1	R8 - Reference Station R8	S1 Sthenelais pettiboneae
C2 - Control Station C2	R9 - Reference Station R9	S2 Polychaete mud
C3 - Control Station C3	R10 - Reference Station R10	S3 Polychaete thick
C4 - Control Station C4	R11 - Reference Station R11	S6 Corbula truncata
C5 - Control Station C5	IM1 - Impact Station IM1	S7 Soletellina alba
C6 - Control Station C6	IM2 - Impact Station IM2	S8 Paphia undulata
C7 - Control Station C7	IM3 - Impact Station IM3	S9 Cyamiomactra
R1 - Reference Station R1	IM4 - Impact Station IM4	S13 Trichomya hirsuta
R2 - Reference Station R2	IM5 - Impact Station IM5	
R6 - Reference Station R6	IM6 – Impact Station IM6	
R7 - Reference Station R7	IM7 – Impact Station IM7	

Six species differentiated sampling stations during the March 2020 sampling period:

- Reference Stations R10, R1, R9; Control Stations C5 and C7; and the Impact Station IM1 were defined by greater numbers of the Polychaete worm *Sthenelais pettiboneae* and the mud worm designated S2.
- Impact Stations IM5 and IM2 were characterised by relatively large numbers of the mussel *Trichomya hirsuta* (S13) and the bivalve *Soletellina alba* (S7). IM5 and IM2 were also characterised by higher numbers of the Polychaete designated S3.
- The Control Stations C1, C4 and C6; the Impact Stations IM3, IM4, IM6, and IM7; and the Reference Stations R2 and R7 were differentiated by very low numbers of Polychaete worms (S1 and S2).
- The Control Stations C2, C5, and C7; the Reference Stations R9 and R10, and the Impact Station IM1 were also differentiated by relatively higher concentrations of dissolved oxygen in the bottom waters. Whilst Control Stations C4 and C6; Impact Stations IM3, IM4, IM7 and IM6; and Reference Stations R7 and R2 were characterised by low concentrations of dissolved oxygen in the bottom waters and low abundance of common species.

Conclusions

The results from the March 2020 benthic communities monitoring results show compliance to the Schedule 4 Environmental Conditions - underground mining of SSD5465 - Modification 2 in the Performance Measures table with respect to the Subsidence Impact Performance Measure for Benthic communities which display nil to minor environmental consequences due to underground mining.

The below summary of findings outline the historical basis for this compliance statement and the compliance is detailed in the table below.

Condition from SSD5465 - Mod 2	Compliance Status and Comments
Schedule 4 Environmental Conditions - underground mining Performance Measures - Natural Environment Biodiversity - Benthic Communities.	Compliant - See section 16 - Conclusions
Subsidence Impact Performance Measure - Minor environmental consequences, including minor changes composition and/or distribution.	
Measurements undertaken by generally accepted methods.	Compliant - See section 4 and 5
Measurements Methods fully described.	Compliant - See section 4 and 5

In March 2020, 22 benthic stations were sampled in the study area. A total of 1032 organisms greater than 1mm in size were found, comprising 12 species. This compares with the results from March and September 2019 where 832 and 815 organisms respectively were recorded representing approximately eleven species. As in previous years, polychaete worms and bivalve molluscs were the most frequently encountered animals. Stations were distinguished by the relative abundance of the dominant species. Water depth was not in any way important in determining the species composition at a station.

Physical variables such as salinity, conductivity and turbidity of the bottom water, measured only on the day the benthos was sampled, had little influence on the species composition of the benthos. Dissolved oxygen concentration, however, can have a major effect on abundance. It is clear that major extinction events have occurred in the mud basin of Lake Macquarie. The evidence for this lies in the presence of large numbers of intact but dead bivalve shells entombed in the mud. The cause of extinction events appears to be prolonged dissolved oxygen depletion of bottom water. Prolonged dissolved oxygen depletion of the bottom water was measured during the water quality study conducted by Laxton and Laxton (1983 to 1997). Low concentrations of dissolved oxygen in the bottom water were also recorded during this sampling period. Stations with low abundance of organisms correlated with low concentrations of dissolved oxygen in the bottom waters.

Bottom sediment in the study area was composed of fine black mud with varying proportions of black sand and shell fragments. In March 2020 some changes to the composition of the upper 100mm of the bottom sediments were detected. At Stations C5 and C7 the sediment comprised mostly sand where previously it was fine black silt.

These results appear to support the notion that increasing the water depth by the predicted 0.8m subsidence has, to date, had no discernible effect on the composition and abundance of organisms making up the benthos of the mud basin.

References

Gabriel, K.R. (1971) The biplot graphical display of matrices with applications to principal component analysis. *Biometrika* 58: 453-525.

Gabriel, K.R. and Odoroff, C.L. (1990) Biplots in biomedical research. Statistics in Medicine 9: 469-485.

Laxton, J.H. and Emma Laxton (2007). Aquatic Biology of Chain Valley Bay Lake Macquarie, NSW. Report to Peabody/Lake Coal Chain Valley Colliery.

Acknowledgements

We wish to acknowledge the help of Mr Chris Ellis, Mr Wade Covey and Mr Chris Armit in facilitating the study.

Appendix 1 Water Quality Profile Results for March 2020

Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	pH (pH	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
C1	11/03/2020	10:18:56		24.98	8000		1.1	8.7			
	11/03/2020	10:19:21	0.52	24.99	8000	50.41	0.8	8.7	3 33.00	81.3	5.57
	11/03/2020	10:19:37	1.02	25	8000	50.41	0.8	8.7	3 33.00	80.3	5.49
	11/03/2020	10:20:03	1.54	24.99	8000	50.42	0.9	8.7	3 33.00	81.1	5.55
	11/03/2020	10:20:23	2.06	24.94	8000	50.38	1.4	8.7	3 33.00	81.7	5.60
	11/03/2020	10:20:43	2.53	24.63	8000	50.34	1.2	8.7	3 33.00	81.8	5.64
	11/03/2020	10:20:57	3.06	24.64	8000	50.37	1.0	8.7	7 33.00	81.6	5.62
	11/03/2020	10:21:21	3.52	24.63	8000	50.39	1.3	8.7	7 33.00	80.4	5.54
	11/03/2020	10:21:52	4.03	24.65	8000	50.45	14.7	8.7	4 33.10	75.1	5.17
	11/03/2020	10:22:14	4.48	24.6	8000	50.45	19.9	8.7	2 33.10	72.6	5.00
Station	Date	Time				Cond (ms/cm)				D.O. (%sat)	
C2	10/03/2020			24.88	8000						
	10/03/2020			24.89	8000						
	10/03/2020			24.85							
	10/03/2020			24.88							
	10/03/2020		2.08	24.82							
	10/03/2020			24.83							
	10/03/2020			24.73							
	10/03/2020			24.71	8000						
	10/03/2020			24.7							
	10/03/2020			24.69							
	10/03/2020	11:27:48	4.69	24.66	8000	50.52	3.8	8.8	33.10	78.9	5.43
Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	pH (pH	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
C3	10/03/2020	10:55:45		24.87	8000						
	10/03/2020			24.89	8000						
	10/03/2020			24.88	8000						
	10/03/2020			24.89	8000			8.8			
	10/03/2020	10:57:47	2.04	24.87	8000	50.44	1.5	8.8	33.00	82.7	5.67
	10/03/2020	10:58:12	2.62	24.87	8000	50.40	1.8	8.8	5 33.00	83.3	5.72
	10/03/2020	10:58:45	3.20	24.88	8000	50.39	1.9	8.8	5 33.00	82.2	5.64
	10/03/2020			24.81	8000						
	10/03/2020			24.8	8000						
	10/03/2020			24.79	8000						
	10/03/2020	11:00:20	4.98	24.67	8000	50.52	2.9	8.7	33.10	78.6	5.41
	10/03/2020	11:00:42	5.49	24.91	8000	51.06	10.4	8.6	3 33.50	65.0	4.44
	10/03/2020	11:01:37	5.53	24.9	8000	50.82	10.1	8.6	33.30	59.8	4.09
04-4-	Data	T i	Denth (M)	T (O)	Q = = = (+== /====)	Quard (max/uma)	Turk (atu)				
Station C4	Date 11/03/2020	Time 7:17:35		1emp (C) 26.35	Cond (us/cm) 8000	Cond (ms/cm) 50.38					
04	11/03/2020	7:17:33		26.33			2.4				
	11/03/2020			26.4							
	11/03/2020			26.2							
	11/03/2020										
	11/03/2020			25.68							
	11/03/2020			25.62							
	11/03/2020			25.24							
	11/03/2020			25.14							
	11/03/2020			25.12							
	11/03/2020			25.09							
	11/03/2020			25.12							
	11/03/2020			25.12							
	11/03/2020	7:23:58	5.45	25.11	8000	51.06	4.3	8.6	5 33.50	50.2	3.42

Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	(Ha) Ha	Sal (ppt)	D.O. (%sat)	D.O. (ma/l)
C5	10/03/2020	7:10:18			8000						
	10/03/2020	7:10:54				50.35	0.8				
	10/03/2020	7:11:22				50.33					
	10/03/2020	7:11:51	1.51	24.61	8000	50.36	0.4				
	10/03/2020	7:12:43		24.62		50.36		9.02			
	10/03/2020	7:13:27	2.52			50.37	0.4				
	10/03/2020	7:13:53				50.38	0.5				
	10/03/2020	7:14:20	3.54			50.39	0.5				
	10/03/2020	7:14:45				50.40	0.4				
	10/03/2020	7:15:13				50.40	0.3				
	10/03/2020	7:15:40	5.08			50.41	0.9				
	10/03/2020	7:16:02				50.43	4.3				
	10/03/2020	7:16:55				50.46		8.90			
	-										
Station	Date	Time				Cond (ms/cm)					
C6	11/03/2020	7:44:53		26.11	8000						
	11/03/2020	7:45:13			8000	50.45					
	11/03/2020	7:45:48				50.43	1.3				
	11/03/2020	7:46:11	1.52		8000	50.41	1.3				
	11/03/2020	7:46:30			8000	50.41	1.9				
	11/03/2020	7:46:55			8000	50.42	1.1				
	11/03/2020	7:47:15				50.50	1.6				
	11/03/2020	7:47:39	3.54		8000	50.51	2.0				
	11/03/2020	7:48:00	4.09			50.47	1.8				
	11/03/2020	7:48:29				50.42	2.1				
	11/03/2020	7:48:49				50.65					
	11/03/2020	7:49:17	5.45	25.1	8000	51.01	4.9	8.61	33.50	57.6	3.92
Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	pH (pH)	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
C7	10/03/2020	8:54:08	0.36	24.98	8000	50.21	2.2	8.83	32.90	81.0	5.55
	10/03/2020	8:54:30	0.53	24.98	8000	50.22	2.1	8.83	32.90	80.8	5.54
	10/03/2020	8:55:00	1.17	24.98	8000	50.23	2.4	8.83	32.90	81.2	5.57
	10/03/2020	8:55:28	1.51	24.98	8000	50.20	2.6				
	10/03/2020	8:55:50	2.06	24.97	8000	50.21	3.5			81.2	
	10/03/2020	8:56:20	2.54	24.97	8000	50.22	2.5	8.83	32.90	81.7	5.60
	10/03/2020	8:56:55	2.98	24.98	8000	50.21	2.9	8.82	32.90	81.4	5.57
	10/03/2020	8:57:26	3.52	24.99	8000	50.23	2.6	8.82	32.90	82.0	5.62
	10/03/2020	8:57:44	4.01	24.97	8000	50.20	2.0	8.81	32.90	82.2	5.63
	10/03/2020	8:58:10	4.48	24.98	8000	50.26	2.5	8.81	32.90	83.0	5.68
	10/03/2020	8:58:31	5.02	24.75	8000	50.24	6.5	8.79	32.90	78.8	5.42
	10/03/2020	8:58:54	5.25	24.73	8000	50.22	7.1	8.77	32.90	77.3	5.32
Station	Date	Time	Depth (M)		Cond (us/cm)	Cond (ms/cm)	Turb (ptu)	nH (nH)	Sal (nnt)		
R1	11/03/2020										
	11/03/2020										
	11/03/2020										
	11/03/2020										
	11/03/2020										
	11/03/2020										
	11/03/2020				8000	50.53					
											0.44
	11/03/2020										5.21

Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	pH (pH)	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
R2	11/03/2020						3.5				
	11/03/2020			24.39	8000		3.6				5.41
	11/03/2020	11:43:00		24.4		50.12	3.5	8.85			5.41
	11/03/2020	11:43:16	1.59	24.4	8000	50.13	3.7	8.85	32.80	78.3	5.42
	11/03/2020	11:43:31	2.12	24.4	8000	50.12	3.9	8.85	32.80	79.2	5.48
	11/03/2020	11:43:45	2.68	24.4	8000	50.13	3.7	8.85	32.80	79.1	5.48
	11/03/2020	11:44:02	3.08	24.41	8000	50.13	3.7	8.85	32.80	79.1	5.48
	11/03/2020	11:44:21	3.53	24.41	8000	50.14	3.5	8.85	32.80	78.4	5.42
	11/03/2020	11:44:35	4.03	24.41	8000	50.17	3.7	8.84	32.80	78.1	5.40
	11/03/2020	11:44:50	4.51	24.57	8000	50.40	6.5	8.81	33.00	74.3	5.13
Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	pH (pH)	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
R3	10/03/2020	11:48:53					2.1	8.86			
	10/03/2020	11:49:32	0.53	26.01	8000	50.52	1.9	8.86	33.10	82.7	5.56
	10/03/2020	11:50:06	1.02	26.03	8000	50.48	2.2	8.86	33.10	83.3	5.60
	10/03/2020	11:50:32	1.55	26	8000	50.49	1.9	8.85	33.10	82.8	5.57
	10/03/2020	11:50:51	2.09	26.02	8000	50.51	2.5	8.85	33.10	83.3	5.60
	10/03/2020	11:51:19	2.51	25.98	8000	50.48	1.9	8.84	33.10	84.0	5.65
	10/03/2020	11:51:44	3.03	25.91	8000	50.50	2.0	8.84	33.10	83.0	5.59
	10/03/2020	11:52:14	3.45	25.46	8000	50.54	1.8	8.83	33.10	82.6	5.61
	10/03/2020	11:52:40	4.00	25.2	8000	50.51	1.5	8.81	33.10	81.7	5.57
	10/03/2020	11:53:06	4.56	24.99	8000	50.77	2.9	8.77	33.30	76.7	5.24
	10/03/2020						3.3				
	10/03/2020					51.21	5.5	8.68	33.60		
Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	nH (nH)	Sal (not)	D.O. (%sat)	
R4	10/03/2020		• • • •	/	. ,	, ,	2.5	8.87		. ,	
	10/03/2020						2.5	8.87	33.20		
	10/03/2020					50.50	2.5	8.86			
	10/03/2020						2.0				
	10/03/2020						2.3				
	10/03/2020				8000	50.50	2.2	8.86			
	10/03/2020						2.2				
	10/03/2020					50.52	2.6	8.85			5.64
	10/03/2020					50.51	2.0				
	10/03/2020						2.8	8.83			
	10/03/2020				8000	50.95	5.1	8.74			
	10/03/2020					51.05	4.2	8.70			
	10/03/2020						5.4				
Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	(Ha) Ha	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
R5	10/03/2020										
	10/03/2020										
	10/03/2020										
	10/03/2020						2.2				
		10:28:50					1.7				
							3.1				
		10:29:11	2.54	25.36		00.01	.				
	10/03/2020					50 04	1 9	8 82	32 80	83.9	
	10/03/2020 10/03/2020	10:29:40	3.22	25.35	8000						
	10/03/2020 10/03/2020 10/03/2020	10:29:40 10:30:10	3.22 3.54	25.35 25.26	8000 8000	50.04	1.8	8.82	32.80	84.8	5.79
	10/03/2020 10/03/2020 10/03/2020 10/03/2020	10:29:40 10:30:10 10:30:48	3.22 3.54 4.12	25.35 25.26 25.26	8000 8000 8000	50.04 50.09	1.8 2.1	8.82 8.81	32.80 32.80	84.8 83.8	5.79 5.72
	10/03/2020 10/03/2020 10/03/2020 10/03/2020 10/03/2020 10/03/2020	10:29:40 10:30:10 10:30:48 10:31:15	3.22 3.54 4.12 5.04	25.35 25.26 25.26 25.4	8000 8000 8000 8000	50.04 50.09 50.23	1.8 2.1 2.4	8.82 8.81 8.77	32.80 32.80 32.90	84.8 83.8 78.5	5.79 5.72 5.34
	10/03/2020 10/03/2020 10/03/2020 10/03/2020	10:29:40 10:30:10 10:30:48 10:31:15 10:31:35	3.22 3.54 4.12 5.04 5.51	25.35 25.26 25.26 25.4 25.4	8000 8000 8000 8000 8000	50.04 50.09 50.23 50.87	1.8 2.1 2.4 7.6	8.82 8.81 8.77 8.61	32.80 32.80 32.90 33.40	84.8 83.8 78.5 58.2	5.79 5.72 5.34 3.94

Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	nH (nH)	Sal (ppt)	DO (%sat)	DO(ma/l)
R6	10/03/2020	9:51:49			8000	50.22		8.84			
	10/03/2020				8000	50.21		8.84			
	10/03/2020	9:53:05				50.20		8.84			
	10/03/2020	9:54:18				50.18		8.83			
	10/03/2020	9:54:45		25.46		50.22					5.38
	10/03/2020	9:55:08				50.27		8.82			
	10/03/2020	9:55:29	3.05			50.23		8.82			
	10/03/2020	9:55:57	3.51	25.45		50.26		8.81			
	10/03/2020	9:56:23		25.43		50.24					
	10/03/2020	9:56:48				50.24		8.80			
	10/03/2020		5.05			50.24		8.80			
	10/03/2020	9:57:45				50.64					
	10/03/2020	9:58:00				51.16					
		0.00.00	0.00	20111		00	0.2	0.00		0.110	0.10
Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	pH (pH)	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
R7	10/03/2020	7:48:00	0.41	24.80	8000	50.35	1.8	8.92	33.00	77.5	5.32
	10/03/2020	7:48:43	0.58	24.84	8000	50.31	1.3	8.91	33.00	78.0	5.36
	10/03/2020	7:49:17	1.04	24.86	8000	50.39	1.6	8.90	33.00	78.5	5.38
	10/03/2020	7:49:57	1.50	24.83	8000	50.38	1.6	8.90	33.00	78.0	5.35
	10/03/2020	7:50:19	2.01	24.82	8000	50.37	2.1	8.89	33.00	79.0	5.43
	10/03/2020	7:50:45	2.52	24.80	8000	50.40	1.4	8.88	33.00	77.8	5.34
	10/03/2020	7:51:07	3.05	24.76	8000	50.44	1.9	8.87	33.00	77.9	5.35
	10/03/2020	7:51:26	3.63	24.75	8000	50.46	1.1	8.87	33.10	77.9	5.35
	10/03/2020	7:51:57	4.12	24.72	8000	50.55	1.8	8.86	33.10	77.7	5.34
	10/03/2020	7:52:25	4.57	24.75	8000	50.49	1.6	8.85	33.10	77.7	5.34
	10/03/2020	7:52:47	5.06	24.76	8000	50.52	2.2	8.84	33.10	77.6	5.33
	10/03/2020	7:53:24	5.94	24.91	8000	50.86	1.9	8.80	33.40	73.7	5.04
	10/03/2020	7:54:04	6.53	24.94	8000	51.21	2.9	8.72	33.60	61.5	4.20
	10/03/2020	7:54:30	6.90	24.94	8000	51.23	3.0	8.71	33.60	60.4	4.12
Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	(Ha) Ha	Sal (ppt)	D.O. (%sat)	D.O. (ma/l)
R8	11/03/2020		,	/	, ,	50.47	. ,	8.83			
	11/03/2020										
		9:29:43	0.49	25.76	8000	50.50	1.1	8.83	33.10	80.1	5.41
						50.50 50.51		8.83 8.83			5.41 5.48
	11/03/2020	9:30:06	1.00	25.77	8000	50.51	2.8	8.83	33.10	81.2	5.48
	11/03/2020 11/03/2020	9:30:06 9:30:30	1.00 1.60	25.77 25.75	8000 8000	50.51 50.51	2.8 1.5	8.83 8.82	33.10 33.10	81.2 80.8	5.48 5.46
	11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53	1.00 1.60 2.31	25.77 25.75 25.75	8000 8000 8000	50.51 50.51 50.52	2.8 1.5 2.0	8.83 8.82 8.82	33.10 33.10 33.10	81.2 80.8 81.5	5.48 5.46 5.50
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18	1.00 1.60 2.31 2.55	25.77 25.75 25.75 25.73	8000 8000 8000 8000	50.51 50.51 50.52 50.48	2.8 1.5 2.0 1.8	8.83 8.82 8.82 8.81	33.10 33.10 33.10 33.10	81.2 80.8 81.5 80.9	5.48 5.46 5.50 5.47
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41	1.00 1.60 2.31 2.55 3.12	25.77 25.75 25.75 25.73 25.66	8000 8000 8000 8000 8000	50.51 50.51 50.52 50.48 50.47	2.8 1.5 2.0 1.8 1.7	8.83 8.82 8.82 8.81 8.81	33.10 33.10 33.10 33.10 33.10	81.2 80.8 81.5 80.9 81.8	5.48 5.46 5.50 5.47 5.53
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17	1.00 1.60 2.31 2.55 3.12 3.62	25.77 25.75 25.75 25.73 25.66	8000 8000 8000 8000 8000	50.51 50.51 50.52 50.48	2.8 1.5 2.0 1.8 1.7 2.0	8.83 8.82 8.82 8.81 8.81 8.81 8.80	33.10 33.10 33.10 33.10 33.10 33.00	81.2 80.8 81.5 80.9 81.8 81.5	5.48 5.46 5.50 5.47 5.53 5.55
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17	1.00 1.60 2.31 2.55 3.12 3.62	25.77 25.75 25.75 25.73 25.66 25.32 25.1	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.51 50.52 50.48 50.47 50.43	2.8 1.5 2.0 1.8 1.7 2.0 2.4	8.83 8.82 8.82 8.81 8.81 8.81 8.80	33.10 33.10 33.10 33.10 33.10 33.00 33.00 33.10	81.2 80.8 81.5 80.9 81.8 81.5 76.5	5.48 5.46 5.50 5.47 5.53 5.55
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.53	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9	8.83 8.82 8.82 8.81 8.81 8.81 8.80 8.76 8.75	33.10 33.10 33.10 33.10 33.10 33.00 33.10 33.10	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.5 76.1	5.48 5.46 5.50 5.47 5.53 5.55 5.23 5.21
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30	1.00 1.60 2.31 2.55 3.12 3.62 4.01	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.51 50.52 50.48 50.47 50.43 50.53 50.53 50.50 50.69	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9	8.83 8.82 8.82 8.81 8.81 8.81 8.80 8.76 8.75 8.75 8.72	33.10 33.10 33.10 33.10 33.10 33.00 33.10 33.10 33.20	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.5 76.1 71.4	5.48 5.46 5.50 5.47 5.53 5.55 5.23 5.21 4.89
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55	25.77 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6	8.83 8.82 8.81 8.81 8.80 8.76 8.75 8.72 8.65	33.10 33.10 33.10 33.10 33.00 33.10 33.10 33.10 33.10 33.20 33.40	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9	5.48 5.46 5.50 5.47 5.53 5.55 5.23 5.21 4.89 4.23
Station	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 Date	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M)	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C)	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm)	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu)	8.83 8.82 8.82 8.81 8.81 8.80 8.76 8.75 8.72 8.65 9H (pH)	33.10 33.10 33.10 33.10 33.00 33.10 33.10 33.10 33.20 33.40 Sal (ppt)	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat)	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l)
Station R9	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 Date 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time 11:17:57	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M) 0.37	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C) 25.16	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm) 50.38	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu) 0.6	8.83 8.82 8.82 8.81 8.81 8.80 8.76 8.75 8.72 8.65 9H (pH) 8.91	33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.20 33.40 Sal (ppt) 33.00	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat) 80.3	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l) 5.48
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 Date 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time 11:17:57 11:18:14	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M) 0.37 0.53	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C) 25.16 25.15	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm) 50.38 50.38	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu) 0.6 0.7	8.83 8.82 8.82 8.81 8.81 8.80 8.75 8.72 8.65 9H (pH) 8.91 8.91	33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.20 33.40 Sal (ppt) 33.00 33.00	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat) 80.3 80.6	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l) 5.48 5.50
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time 11:17:57 11:18:14 11:18:32	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M) 0.37 0.53 1.00	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C) 25.16 25.15 25.16	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm) 50.38 50.38 50.38	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu) 0.6 0.7 0.7	8.83 8.82 8.82 8.81 8.81 8.80 8.75 8.72 8.65 9H (pH) 8.91 8.90 8.90	33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.20 33.40 Sal (ppt) 33.00 33.00 33.00	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat) 80.3 80.6 81.2	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l) 5.48 5.50 5.54
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time 11:17:57 11:18:14 11:18:32 11:18:56	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M) 0.37 0.53 1.00 1.54	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C) 25.16 25.15 25.16 25.16	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm) 50.38 50.38 50.38 50.38	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu) 0.6 0.7 0.7 1.0	8.83 8.82 8.82 8.81 8.81 8.80 8.75 8.72 8.65 9H (pH) 8.91 8.90 8.90 8.90 8.90	33.10 33.10 33.10 33.10 33.00 33.10 33.10 33.20 33.40 Sal (ppt) 33.00 33.00 33.00 33.00 33.00	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat) 80.3 80.6 81.2 81.4	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l) 5.48 5.50 5.54 5.54
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time 11:17:57 11:18:14 11:18:32 11:18:56 11:19:10	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M) 0.37 0.53 1.00 1.54 2.01	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C) 25.16 25.15 25.16 25.16 25.16 25.17	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm) 50.38 50.38 50.38 50.38 50.38	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu) 0.6 0.7 0.7 1.0 0.6	8.83 8.82 8.82 8.81 8.81 8.80 8.75 8.72 8.65 9H (pH) 8.91 8.90 8.90 8.90 8.90 8.90	33.10 33.10 33.10 33.10 33.00 33.10 33.10 33.20 33.40 Sal (ppt) 33.00 33.00 33.00 33.00 33.00 33.00	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat) 80.3 80.6 81.2 81.4 81.4	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l) 5.48 5.50 5.54 5.54 5.56 5.52
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time 11:17:57 11:18:14 11:18:32 11:18:56 11:19:10 11:19:28	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M) 0.37 0.53 1.00 1.54 2.01 2.50	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C) 25.16 25.15 25.16 25.16 25.16 25.17	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm) 50.38 50.38 50.38 50.38 50.38 50.39 50.39	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu) 0.6 0.7 0.7 1.0 0.6 0.8	8.83 8.82 8.82 8.81 8.81 8.80 8.75 8.72 8.65 9H (pH) 8.91 8.90 8.90 8.90 8.90 8.90 8.90	33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.20 33.40 33.00 33.00 33.00 33.00 33.00 33.00 33.00	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat) 80.3 80.6 81.2 81.4 81.0 81.6	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l) 5.48 5.50 5.54 5.54 5.56 5.52
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time 11:17:57 11:18:14 11:18:32 11:18:56 11:19:10 11:19:28 11:19:47	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M) 0.37 0.53 1.00 1.54 2.01 2.50 3.02	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C) 25.16 25.15 25.16 25.16 25.16 25.17 25.17	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm) 50.38 50.38 50.38 50.38 50.38 50.38	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu) 0.6 0.7 0.7 1.0 0.6 0.8 0.7	8.83 8.82 8.82 8.81 8.81 8.80 8.75 8.72 8.65 9H (pH) 8.91 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90	33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.20 33.40 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat) 80.3 80.6 81.2 81.4 81.0 81.6 82.0	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l) 5.48 5.50 5.54 5.54 5.56 5.52 5.57 5.60
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time 11:17:57 11:18:14 11:18:32 11:18:56 11:19:10 11:19:28 11:19:47 11:20:09	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M) 0.37 0.53 1.00 1.54 2.01 2.50 3.02 3.51	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C) 25.16 25.15 25.16 25.16 25.16 25.17 25.17 25.17 25.11 25.08	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm) 50.38 50.38 50.38 50.38 50.38 50.38 50.38	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu) 0.6 0.7 0.7 1.0 0.6 0.8 0.7 0.7	8.83 8.82 8.82 8.81 8.81 8.80 8.75 8.72 8.65 9H (pH) 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90	33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.20 33.40 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat) 80.3 80.6 81.2 81.4 81.0 81.6 82.0 81.7	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l) 5.48 5.50 5.54 5.54 5.56 5.52 5.57 5.60 5.59
	11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020 11/03/2020	9:30:06 9:30:30 9:30:53 9:31:18 9:31:41 9:32:17 9:32:44 9:33:11 9:33:30 9:33:47 Time 11:17:57 11:18:14 11:18:32 11:18:56 11:19:10 11:19:28 11:19:47 11:20:09 11:20:28	1.00 1.60 2.31 2.55 3.12 3.62 4.01 4.53 5.07 5.55 Depth (M) 0.37 0.53 1.00 1.54 2.01 2.50 3.02 3.51 4.04	25.77 25.75 25.75 25.73 25.66 25.32 25.1 24.88 24.89 25.03 Temp (C) 25.16 25.15 25.16 25.16 25.16 25.17 25.11 25.11 25.08 24.76	8000 8000 8000 8000 8000 8000 8000 800	50.51 50.52 50.48 50.47 50.43 50.53 50.50 50.69 50.93 Cond (ms/cm) 50.38 50.38 50.38 50.38 50.38 50.38 50.38 50.33 50.33 50.33	2.8 1.5 2.0 1.8 1.7 2.0 2.4 2.9 3.9 4.6 Turb (ntu) 0.6 0.7 0.7 1.0 0.6 0.8 0.7 0.6 0.8	8.83 8.82 8.82 8.81 8.81 8.80 8.75 8.72 8.65 9H (pH) 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90	33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.20 33.40 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00	81.2 80.8 81.5 80.9 81.8 81.5 76.5 76.1 71.4 61.9 D.O. (%sat) 80.3 80.6 81.2 81.4 81.0 81.6 82.0 81.7 81.4	5.48 5.46 5.50 5.47 5.53 5.23 5.21 4.89 4.23 D.O. (mg/l) 5.48 5.50 5.54 5.54 5.56 5.52 5.57 5.60 5.59 5.60

Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	(Ha) Ha	Sal (ppt)	D.O. (%sat)	D.O. (ma/l)
R10	10/03/2020	9:22:05	0.33				2.8				5.54
	10/03/2020	9:22:46	0.55			50.19	2.3				5.52
	10/03/2020		1.08								5.46
	10/03/2020		1.52			50.14					5.59
	10/03/2020		1.99			50.19	2.6				5.57
	10/03/2020	9:25:06	2.45			50.18					5.62
	10/03/2020		3.06			50.10	3.2				5.61
	10/03/2020		3.51	24.96		50.17	3.6				5.56
	10/03/2020		4.08			50.17	3.1				5.58
	10/03/2020	9:26:31	4.63			50.15					5.52
	10/03/2020		4.87			50.22					5.15
Station	Date	Time				Cond (ms/cm)					
R11	10/03/2020		0.34								5.37
	10/03/2020	8:26:37	0.51			50.55	1.8				5.37
	10/03/2020		1.05								5.41
	10/03/2020		1.53			50.62					5.44
	10/03/2020		2.17			50.56		8.88	33.10		5.40
	10/03/2020	8:28:18	2.66			50.58			33.10		5.39
	10/03/2020	8:28:31	3.05			50.55	3.1	8.87	33.10		5.43
	10/03/2020	8:28:58	3.48	24.67	8000	50.59	2.1	8.87	33.20	79.0	5.43
	10/03/2020	8:29:26	3.99	24.69	8000	50.57	1.2	8.86	33.10	79.9	5.50
	10/03/2020	8:29:47	4.55	24.68	8000	50.54	1.4	8.86	33.10	80.3	5.52
	10/03/2020	8:30:14	5.01	24.67	8000	50.54	1.0	8.85	33.10	80.4	5.53
	10/03/2020	8:30:30	5.53	24.63	8000	50.58	1.7	8.85	33.20	80.1	5.51
	10/03/2020	8:30:52	5.94	24.53	8000	50.54	2.9	8.84	33.10	80.1	5.52
	10/03/2020	8:31:29	6.46	24.4	8000	50.58	6.6	8.81	33.20	77.8	5.37
Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	pH (pH)	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
IM1	11/03/2020	10:44:51	0.30	24.68	8000	50.34	1.9	8.85	33.00	79.8	5.49
	11/03/2020	10:45:07	0.51	24.68	8000	50.34	1.7	8.85	33.00	79.9	5.50
	11/03/2020	10:45:38	1.06	24.74	8000	50.40	1.2	8.85	33.00	80.8	5.55
	11/03/2020	10:46:04	1.50	24.73	8000	50.36	1.3	8.85	33.00	81.1	5.57
	11/03/2020	10:46:22	2.01	24.7	8000	50.37	1.5	8.84	33.00	80.5	5.54
	11/03/2020	10:46:35	2.56	24.71	8000	50.37	1.3	8.84	33.00	80.9	5.56
	11/03/2020	10:46:53	3.05	24.71	8000	50.37	1.9	8.84	33.00	81.6	5.62
	11/03/2020	10:47:23	3.53	24.7	8000	50.38	1.5	8.84	33.00	80.1	5.51
	11/03/2020	10:47:45	4.02	24.71	8000	50.38	1.4	8.83	33.00	81.4	5.60
	11/03/2020	10:48:13	4.30	24.7	8000	50.39	3.2	8.83	33.00	80.8	5.56
	11/03/2020	10:48:55	4.33	24.7	8000	50.39	4.3	8.82	33.00	81.2	5.59
Station	Data	Timo	Dopth (M)	Tomp (C)	Cond (up/om)	Cond (ms/cm)	Turb (ntu)	nH (nL)	Sal (not)		
Station IM2	Date	Time 8:24:21				50.52					
IIVIZ											
	11/03/2020		0.57								
	11/03/2020		1.06								
	11/03/2020		1.52				1.7				
	11/03/2020		2.09								
	11/03/2020		2.50								
	11/03/2020		2.91								
	11/03/2020		3.53								
	11/03/2020		4.05								
	11/03/2020		4.54								
	11/03/2020	8:39:07	4.97	25.07	8000	51.27	5.4	8.55	33.70	45.1	3.07

Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	pH (pH)	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
IM3	11/03/2020	9:02:09	0.43	25.69	8000	50.51	2.1	8.83	33.10	80.3	5.43
	11/03/2020	9:02:41	1.07	25.7	8000	50.50	1.5	8.82	33.10	81.8	5.53
	11/03/2020	9:03:20	1.55	25.69	8000	50.50	1.0	8.82	33.10	81.5	5.51
	11/03/2020	9:03:43	2.06	25.68	8000	50.51	1.4	8.81	33.10	81.9	5.54
	11/03/2020	9:04:09	2.59	25.69	8000	50.49	1.3	8.81	33.10	81.4	5.50
	11/03/2020	9:04:29	3.18	25.68	8000	50.52	1.5	8.80	33.10	82.3	5.56
	11/03/2020	9:04:50	3.56	25.67	8000	50.46	1.4	8.79	33.10	81.4	5.51
	11/03/2020	9:05:12	4.29	25.17	8000	50.51	3.7	8.74	33.10	74.6	5.09
	11/03/2020	9:05:32	4.59	25.2	8000	50.67	3.4	8.71	33.20	69.9	4.76
	11/03/2020	9:05:51	5.07	25.12	8000	50.94	5.0	8.64	33.40	61.3	4.18
	11/03/2020	9:06:11	5.53	25.1	8000	51.06	9.7	8.57	33.50	51.0	3.48
	11/03/2020	9:06:59	5.51	25.09	8000	51.09	9.8	8.55	33.50	47.5	3.24
Station	Date	Time	Depth (M)	Temp (C)	Cond (us/cm)	Cond (ms/cm)	Turb (ntu)	pH (pH)	Sal (ppt)	D.O. (%sat)	D.O. (mg/l)
IM4	11/03/2020	8:09:37	0.37	25.96	8000	50.47	2.0	8.80	33.10	79.2	5.33
	11/03/2020	8:09:59	0.55	26	8000	50.49	1.7	8.80	33.10	78.7	5.29
	11/03/2020	8:10:54	1.03	26.01	8000	50.45	1.5	8.80	33.10	78.7	5.29
	11/03/2020	8:11:17	1.60	25.97	8000	50.46	1.3	8.80	33.10	79.5	5.35
	11/03/2020	8:11:43	2.09	25.98	8000	50.45	1.7	8.79	33.10	80.3	5.40
	11/03/2020	8:14:05	4.99	25.09	8000	51.31	4.2	8.54	33.70	49.8	3.39
	11/03/2020	8:14:26	5.47	25.04	8000	51.49	6.9	8.51	33.80	42.7	2.91
	11/03/2020	8:14:55	5.94	24.99	8000	51.53	8.4	8.50	33.90	42.1	2.87
	11/03/2020	8:34:21	0.34	25.74	8000	50.52	1.7	8.82	33.10	79.6	5.37
	11/03/2020	8:14:05	4.99	25.09	8000	51.31	4.2	8.54	33.70	49.8	3.39
	11/03/2020	8:14:26	5.47	25.04	8000	51.49	6.9	8.51	33.80	42.7	2.91
	11/03/2020	8:14:55	5.94	24.99	8000	51.53	8.4	8.50	33.90	42.1	2.87